Fruit flies light the way to pinpoint genetic changes that spell cancer

July 30, 2012
Researchers at IMCB are using fruit fly as a genetic model to accelerate the discovery of novel cancer genes. The picture shows metastatic tumours spreading throughout the fly body (visualised by the green fluorescent proteins) when one of the newly found “cooperating” cancer genes are removed in combination with an activated EFGR “driver” mutation.

By studying fruit flies, scientists at A*STAR’s Institute of Molecular and Cell Biology (IMCB) have successfully devised a fast and cost-saving way to uncover genetic changes that have a higher potential to cause cancer. With this new approach, researchers will now be able to rapidly distinguish the range of genetic changes that are causally linked to cancer (i.e. “driver” mutations) versus those with limited impact on cancer progression. This research paves the way for doctors to design more targeted treatment against the different cancer types, based on the specific cancer-linked mutations present in the patient. This study published in the prestigious journal Genes & Development could help advance the development of personalized medicine in cancer care and treatment.

The era of genomic sequencing has generated an unparalleled wealth of information on the complexity of genetic changes that occur as develops and progresses. “Many genetic changes arise in cancer cells and changes continue to accumulate during the progression of disease to metastatic cancer. The current challenge is to understand which of the many genetic changes are important drivers of disease progression” said Dr. Stephen Cohen, Principal Investigator at IMCB and team leader of this paper.

Though very different in many ways, and humans share similarities in a remarkable two-thirds of their genomes. That is to say, many of the genes found in humans are also present in the flies. Similarly, various signalling pathways involved in tumour formation are also well conserved from fruit flies to humans. In fact, previous studies have shown that about 75 percent of known human disease genes have a recognisable match in the genome of fruit flies.

Leveraging on their genetic similarities, Dr. Héctor Herranz, a post-doctorate from the Dr. Cohen’s team developed an innovative strategy to genetically screen the whole fly genome for “cooperating” cancer genes. On their own, these are the genes that appear to be harmless and have little or no impact on cancer. But in fact, they cooperate with other cancer genes, so that the combination causes aggressive cancer, which neither would cause alone.

In this study, the team was specifically looking for genes that could cooperate with EGFR “driver” mutation, a genetic change commonly associated with breast and lung cancers in humans. SOCS5, reported in this paper, is one of the several new “cooperating” cancer genes to be identified through this innovative approach. Most of these new-found genes have yet to be identified as cancer genes in human or mouse models.

Said Mr. Xin Hong, a PhD student and the co-first author of this paper, “We were very surprised by our finding because this it the first time that the SOCS gene family is found to be linked to cancer. Previously it has only been associated with immunological disorders.”

Dr. Cohen added, “Though these studies are in the early stages, they are very promising. Already, there are indications that levels of SOCS5 expression are reduced in breast cancer, and patients with low levels of SOCS5 have poor prognosis.”

The IMCB team is preparing to explore the use of SOCS5 as a biomarker in diagnosis for cancer.

Said Professor Wanjin Hong, Executive Director of IMCB, “This study sheds light on the complexities of cancer genetics and paves the way to accelerate development of personalized medicine in cancer care. It is a fine examples of how powerful genetic approach using the fly model can reveal molecular mechanisms underlying human cancer. More importantly, it shows how fundamental research can have far-reaching applications for potential clinical benefits.”

Explore further: New lung cancer gene found

More information: "Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model" genesdev.cshlp.org/content/26/ … 4/1602.full.pdf+html

Related Stories

New lung cancer gene found

July 19, 2011
A major challenge for cancer biologists is figuring out which among the hundreds of genetic mutations found in a cancer cell are most important for driving the cancer’s spread.

New genome profiling technique identifies weak points in breast cancer cells

August 3, 2011
New research published in Cancer Discovery, the newest journal of the American Association for Cancer Research, details a large-scale project in genetic profiling that has identified many of the weak points in breast tumor ...

Landscape of cancer genes and mutational processes in breast cancer

May 16, 2012
In a study published today in Nature, researchers describe nine new genes that drive the development of breast cancer. This takes the tally of all genes associated with breast cancer development to 40.

'Post-it note' on breast cancer gene signals risk of disease spreading

July 12, 2012
(Medical Xpress) -- A molecular 'post-it note' added to a breast cancer gene could flag up the risk that the disease will spread in patients, according to research published in the BJC today.

Breast cancer risk can be seen years before it develops

May 2, 2012
A person’s risk of breast cancer could be decided many years before it develops, according to a new study.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.