Gene therapy holds promise for reversing congenital hearing loss

July 25, 2012

A new gene therapy approach can reverse hearing loss caused by a genetic defect in a mouse model of congenital deafness, according to a preclinical study published by Cell Press in the July 26 issue of the journal Neuron. The findings present a promising therapeutic avenue for potentially treating individuals who are born deaf.

"This is the first time that an inherited, genetic has been successfully treated in , and as such represents an important milestone for treating genetic deafness in humans," says senior study author Lawrence Lustig of the University of California, San Francisco.

Hearing loss is one of the most common human sensory deficits, and it results from damage to in the . About half of the cases of congenital hearing loss are caused by genetic defects. However, the current treatment options—hearing amplification devices and cochlear implants—do not restore hearing to normal levels. Correcting the underlying genetic defects has the potential to fully restore hearing, but previous attempts to reverse hearing loss caused by genetic mutations have not been successful.

Addressing this challenge in the new study, Lustig and his team used mice with hereditary deafness caused by a mutation in a gene coding for a protein called vesicular glutamate transporter-3 (VGLUT3). This protein is crucial for inner hair cells to send signals that enable hearing. Two weeks after the researchers delivered the VGLUT3 gene into the inner ear through an injection, hearing was restored in all of the mice. This improvement lasted between seven weeks and one and a half years when adult mice were treated, and at least nine months when newborn mice received the treatment.

The therapy did not damage the inner ear, and it even corrected some structural defects in the inner hair cells. Because the specific gene delivery method used is safe and effective in animals, the findings hold promise for future human studies. "For years, scientists have been hinting at the possibility of gene therapy as a potential cure for deafness," Lustig says. "In this study, we now provide a very real and big step towards that goal."

Explore further: Can you hear me now? New strategy discovered to prevent hearing loss

More information: Akil et al.: "Restoration of Hearing in the VGLUT3 Knockout Mouse Using Virally-Mediated Gene Therapy." DOI:10.1016/j.neuron.2012.05.019

Related Stories

Recommended for you

How pheromones trigger female sexual behavior

June 22, 2017

A study by a group of Japanese scientists showed how a male pheromone in mice enhances sexual behaviors in females—and how it may enhance a different behavior, aggression, in males—by identifying distinct neural circuits ...

Coupling of movement and vision

June 22, 2017

In a study published in Cell, Georg Keller and his group shed light on neural circuits in the cortex that underlie the integration of movement and visual feedback. They identified a mechanism in the visual cortex responsible ...

Serotonin improves sociability in mouse model of autism

June 21, 2017

Scientists at the RIKEN Brain Science Institute (BSI) in Japan have linked early serotonin deficiency to several symptoms that occur in autism spectrum disorder (ASD). Published in Science Advances, the study examined serotonin ...

The brain mechanism behind multitasking

June 21, 2017

Although "multitasking" is a popular buzzword, research shows that only 2% of the population actually multitasks efficiently. Most of us just shift back and forth between different tasks, a process that requires our brains ...

Three ways neuroscience can advance the concussion debate

June 21, 2017

While concussion awareness has improved over the past decade, understanding the nuances of these sports injuries, their severity, symptoms, and treatment, is still a work in progress. In the June 21 issue of Neuron, UCLA ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.