Gene therapy holds promise for reversing congenital hearing loss

July 25, 2012

A new gene therapy approach can reverse hearing loss caused by a genetic defect in a mouse model of congenital deafness, according to a preclinical study published by Cell Press in the July 26 issue of the journal Neuron. The findings present a promising therapeutic avenue for potentially treating individuals who are born deaf.

"This is the first time that an inherited, genetic has been successfully treated in , and as such represents an important milestone for treating genetic deafness in humans," says senior study author Lawrence Lustig of the University of California, San Francisco.

Hearing loss is one of the most common human sensory deficits, and it results from damage to in the . About half of the cases of congenital hearing loss are caused by genetic defects. However, the current treatment options—hearing amplification devices and cochlear implants—do not restore hearing to normal levels. Correcting the underlying genetic defects has the potential to fully restore hearing, but previous attempts to reverse hearing loss caused by genetic mutations have not been successful.

Addressing this challenge in the new study, Lustig and his team used mice with hereditary deafness caused by a mutation in a gene coding for a protein called vesicular glutamate transporter-3 (VGLUT3). This protein is crucial for inner hair cells to send signals that enable hearing. Two weeks after the researchers delivered the VGLUT3 gene into the inner ear through an injection, hearing was restored in all of the mice. This improvement lasted between seven weeks and one and a half years when adult mice were treated, and at least nine months when newborn mice received the treatment.

The therapy did not damage the inner ear, and it even corrected some structural defects in the inner hair cells. Because the specific gene delivery method used is safe and effective in animals, the findings hold promise for future human studies. "For years, scientists have been hinting at the possibility of gene therapy as a potential cure for deafness," Lustig says. "In this study, we now provide a very real and big step towards that goal."

Explore further: Can you hear me now? New strategy discovered to prevent hearing loss

More information: Akil et al.: "Restoration of Hearing in the VGLUT3 Knockout Mouse Using Virally-Mediated Gene Therapy." DOI:10.1016/j.neuron.2012.05.019

Related Stories

Can you hear me now? New strategy discovered to prevent hearing loss

July 6, 2012
If you're concerned about losing your hearing because of noise exposure (earbud deafness syndrome), a new discovery published online in the FASEB Journal offers some hope. That's because scientists from Germany and Canada ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.