Gene therapy holds promise for reversing congenital hearing loss

July 25, 2012, Cell Press

A new gene therapy approach can reverse hearing loss caused by a genetic defect in a mouse model of congenital deafness, according to a preclinical study published by Cell Press in the July 26 issue of the journal Neuron. The findings present a promising therapeutic avenue for potentially treating individuals who are born deaf.

"This is the first time that an inherited, genetic has been successfully treated in , and as such represents an important milestone for treating genetic deafness in humans," says senior study author Lawrence Lustig of the University of California, San Francisco.

Hearing loss is one of the most common human sensory deficits, and it results from damage to in the . About half of the cases of congenital hearing loss are caused by genetic defects. However, the current treatment options—hearing amplification devices and cochlear implants—do not restore hearing to normal levels. Correcting the underlying genetic defects has the potential to fully restore hearing, but previous attempts to reverse hearing loss caused by genetic mutations have not been successful.

Addressing this challenge in the new study, Lustig and his team used mice with hereditary deafness caused by a mutation in a gene coding for a protein called vesicular glutamate transporter-3 (VGLUT3). This protein is crucial for inner hair cells to send signals that enable hearing. Two weeks after the researchers delivered the VGLUT3 gene into the inner ear through an injection, hearing was restored in all of the mice. This improvement lasted between seven weeks and one and a half years when adult mice were treated, and at least nine months when newborn mice received the treatment.

The therapy did not damage the inner ear, and it even corrected some structural defects in the inner hair cells. Because the specific gene delivery method used is safe and effective in animals, the findings hold promise for future human studies. "For years, scientists have been hinting at the possibility of gene therapy as a potential cure for deafness," Lustig says. "In this study, we now provide a very real and big step towards that goal."

Explore further: Can you hear me now? New strategy discovered to prevent hearing loss

More information: Akil et al.: "Restoration of Hearing in the VGLUT3 Knockout Mouse Using Virally-Mediated Gene Therapy." DOI:10.1016/j.neuron.2012.05.019

Related Stories

Can you hear me now? New strategy discovered to prevent hearing loss

July 6, 2012
If you're concerned about losing your hearing because of noise exposure (earbud deafness syndrome), a new discovery published online in the FASEB Journal offers some hope. That's because scientists from Germany and Canada ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.