Gene therapy holds promise for reversing congenital hearing loss

July 25, 2012

A new gene therapy approach can reverse hearing loss caused by a genetic defect in a mouse model of congenital deafness, according to a preclinical study published by Cell Press in the July 26 issue of the journal Neuron. The findings present a promising therapeutic avenue for potentially treating individuals who are born deaf.

"This is the first time that an inherited, genetic has been successfully treated in , and as such represents an important milestone for treating genetic deafness in humans," says senior study author Lawrence Lustig of the University of California, San Francisco.

Hearing loss is one of the most common human sensory deficits, and it results from damage to in the . About half of the cases of congenital hearing loss are caused by genetic defects. However, the current treatment options—hearing amplification devices and cochlear implants—do not restore hearing to normal levels. Correcting the underlying genetic defects has the potential to fully restore hearing, but previous attempts to reverse hearing loss caused by genetic mutations have not been successful.

Addressing this challenge in the new study, Lustig and his team used mice with hereditary deafness caused by a mutation in a gene coding for a protein called vesicular glutamate transporter-3 (VGLUT3). This protein is crucial for inner hair cells to send signals that enable hearing. Two weeks after the researchers delivered the VGLUT3 gene into the inner ear through an injection, hearing was restored in all of the mice. This improvement lasted between seven weeks and one and a half years when adult mice were treated, and at least nine months when newborn mice received the treatment.

The therapy did not damage the inner ear, and it even corrected some structural defects in the inner hair cells. Because the specific gene delivery method used is safe and effective in animals, the findings hold promise for future human studies. "For years, scientists have been hinting at the possibility of gene therapy as a potential cure for deafness," Lustig says. "In this study, we now provide a very real and big step towards that goal."

Explore further: Can you hear me now? New strategy discovered to prevent hearing loss

More information: Akil et al.: "Restoration of Hearing in the VGLUT3 Knockout Mouse Using Virally-Mediated Gene Therapy." DOI:10.1016/j.neuron.2012.05.019

Related Stories

Can you hear me now? New strategy discovered to prevent hearing loss

July 6, 2012
If you're concerned about losing your hearing because of noise exposure (earbud deafness syndrome), a new discovery published online in the FASEB Journal offers some hope. That's because scientists from Germany and Canada ...

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Learning and unlearning to fear: The two faces of noradrenaline

September 18, 2017
Emotional learning can create strong memories and powerful emotional responses, but flexible behavior demands that these responses be inhibited when they are no longer appropriate. Scientists at the RIKEN Brain Science Institute ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.