New genetic target found for diuretic therapy

July 30, 2012, University of Cincinnati Academic Health Center

Researchers at the University of Cincinnati (UC) have identified a new genetic target for diuretic therapy in patients with fluid overload—like those with congestive heart failure, liver cirrhosis or kidney failure.

These results, being presented in the July 30 advance online edition of the journal Proceedings of the National Academy of Sciences (PNAS), may lead to the first new diuretic therapy in 25 years and could help who experience diuretic resistance.

Manoocher Soleimani, MD, professor and chief in the division of nephrology and hypertension, says the role of diuretics is to increase urine output and help patients rid themselves of excess fluid when their kidneys are unable to do so.

"For the last several decades, physicians have been using diuretics either alone or in combination to help patients experiencing water retention," he says, adding that this can occur in patients with heart failure, kidney failure or other serious illnesses. "The most common diuretic used worldwide is hydrochlorothiazide, which works by inhibiting the kidneys' ability to retain water; these drugs can also be used to lower blood pressure. The reason they are so widely used is because they are mild and don't cause severe loss of fluid.

"However, they aren't effective with every patient."

In this study, researchers examined the specific segments of the kidneys, called tubules, and the salt-absorbing genes working there.

"The NaCl, or sodium-chloride, co-transporter (NCC), is targeted by hydrochlorothiazide and drugs in that class; it is located in the close proximity of the chloride-absorbing transporter pendrin, both of which absorb salt in the kidney," Soleimani says. "When pendrin is deleted from the body, there is no effect on salt excretion. We thought that pendrin was present to help NCC function in some way, and by using knockout animal models in this study, we found that these two genes cross-compensate for one another, and if NCC is not working, pendrin kicks in to do its job."

He says genetically engineered animal models without NCC had regular urine output and salt excretion; the same results occurred in models without pendrin. However, models lacking both genes lost large amounts of salt, were 40 percent smaller in size and produced an excessive volume of urine.

"In addition to experiencing major volume depletion, mice lacking both genes developed ," Soleimani says. "We were able to show that all of these problems resulted from salt wasting; when we put these models back on high-salt diets, the problems including electrolyte abnormalities and volume depletion were all corrected after just one week."

Soleimani says these findings could lead to a targeted diuretic therapy that inhibits pendrin, further helping patients with severe fluid overload who may not respond well to hydrochlorothiazide.

"By giving a pendrin inhibitor in conjunction with thiazide, a mild diuretic, it could greatly relieve fluid retention, providing another treatment option and improving patient outcomes," he says.

Explore further: Clinical trial examines benefits of, mechanisms behind ultrafiltration for heart failure

Related Stories

Clinical trial examines benefits of, mechanisms behind ultrafiltration for heart failure

February 23, 2012
University of Cincinnati cardiologists are conducting a one-of-a-kind clinical trial to determine if a dialysis-like procedure could be deemed the new standard of care for patients suffering from extensive fluid retention ...

Study clarifies link between salt and hypertension

January 11, 2012
A review article by researchers at Boston University School of Medicine (BUSM) debunks the widely-believed concept that hypertension, or high blood pressure, is the result of excess salt causing an increased blood volume, ...

Popular diabetes drugs' cardiovascular side effects explained

May 3, 2011
Drugs known as thiazolidinediones, or TZDs for short, are widely used in diabetes treatment, but they come with a downside. The drugs have effects on the kidneys that lead to fluid retention as the volume of plasma in the ...

Kidney dopamine regulates blood pressure, life span

July 19, 2011
The neurotransmitter dopamine is best known for its roles in the brain – in signaling pathways that control movement, motivation, reward, learning and memory.

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.