New genetic target found for diuretic therapy

July 30, 2012

Researchers at the University of Cincinnati (UC) have identified a new genetic target for diuretic therapy in patients with fluid overload—like those with congestive heart failure, liver cirrhosis or kidney failure.

These results, being presented in the July 30 advance online edition of the journal Proceedings of the National Academy of Sciences (PNAS), may lead to the first new diuretic therapy in 25 years and could help who experience diuretic resistance.

Manoocher Soleimani, MD, professor and chief in the division of nephrology and hypertension, says the role of diuretics is to increase urine output and help patients rid themselves of excess fluid when their kidneys are unable to do so.

"For the last several decades, physicians have been using diuretics either alone or in combination to help patients experiencing water retention," he says, adding that this can occur in patients with heart failure, kidney failure or other serious illnesses. "The most common diuretic used worldwide is hydrochlorothiazide, which works by inhibiting the kidneys' ability to retain water; these drugs can also be used to lower blood pressure. The reason they are so widely used is because they are mild and don't cause severe loss of fluid.

"However, they aren't effective with every patient."

In this study, researchers examined the specific segments of the kidneys, called tubules, and the salt-absorbing genes working there.

"The NaCl, or sodium-chloride, co-transporter (NCC), is targeted by hydrochlorothiazide and drugs in that class; it is located in the close proximity of the chloride-absorbing transporter pendrin, both of which absorb salt in the kidney," Soleimani says. "When pendrin is deleted from the body, there is no effect on salt excretion. We thought that pendrin was present to help NCC function in some way, and by using knockout animal models in this study, we found that these two genes cross-compensate for one another, and if NCC is not working, pendrin kicks in to do its job."

He says genetically engineered animal models without NCC had regular urine output and salt excretion; the same results occurred in models without pendrin. However, models lacking both genes lost large amounts of salt, were 40 percent smaller in size and produced an excessive volume of urine.

"In addition to experiencing major volume depletion, mice lacking both genes developed ," Soleimani says. "We were able to show that all of these problems resulted from salt wasting; when we put these models back on high-salt diets, the problems including electrolyte abnormalities and volume depletion were all corrected after just one week."

Soleimani says these findings could lead to a targeted diuretic therapy that inhibits pendrin, further helping patients with severe fluid overload who may not respond well to hydrochlorothiazide.

"By giving a pendrin inhibitor in conjunction with thiazide, a mild diuretic, it could greatly relieve fluid retention, providing another treatment option and improving patient outcomes," he says.

Explore further: Clinical trial examines benefits of, mechanisms behind ultrafiltration for heart failure

Related Stories

Clinical trial examines benefits of, mechanisms behind ultrafiltration for heart failure

February 23, 2012
University of Cincinnati cardiologists are conducting a one-of-a-kind clinical trial to determine if a dialysis-like procedure could be deemed the new standard of care for patients suffering from extensive fluid retention ...

Study clarifies link between salt and hypertension

January 11, 2012
A review article by researchers at Boston University School of Medicine (BUSM) debunks the widely-believed concept that hypertension, or high blood pressure, is the result of excess salt causing an increased blood volume, ...

Popular diabetes drugs' cardiovascular side effects explained

May 3, 2011
Drugs known as thiazolidinediones, or TZDs for short, are widely used in diabetes treatment, but they come with a downside. The drugs have effects on the kidneys that lead to fluid retention as the volume of plasma in the ...

Kidney dopamine regulates blood pressure, life span

July 19, 2011
The neurotransmitter dopamine is best known for its roles in the brain – in signaling pathways that control movement, motivation, reward, learning and memory.

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.