Joslin researchers gain new understanding of diabetes and kidney disease

July 23, 2012

Scientists at Joslin Diabetes Center have identified biological mechanisms by which glucagon-like peptide-1 (GLP-1), a gut hormone, protects against kidney disease, and also mechanisms that inhibit its actions in diabetes. The findings, which are reported today online by Diabetes, may lead to the development of new therapeutic agents that harness the actions of GLP-1 to prevent the harmful effects of hyperglycemia on renal endothelial cells.

, also known as , are one of the most life-threatening complications of diabetes that often lead over time to end-stage (ESRD). About a half million people in the US – 44 percent of whom are diabetics -- have ESRD, which requires dialysis or kidney transplantation. As a result, investigating the relationship of diabetes to renal dysfunction is a major focus of diabetes research. "We are very eager to develop new treatments for diabetic ," says George King, M.D., lead author of the study, and chief scientific officer, head of the Dianne Nunnally Hoppes Laboratory for Diabetes Complications and a professor of medicine at Harvard Medical School.

GLP-1 is an incretin hormone that is produced by the intestine in response to food. GLP-1 increases the secretion of insulin from the pancreas, slows absorption of glucose from the gut, and reduces the action of – all of which lower glucose levels in the blood. In addition, GLP-1 reduces appetite. The drug, exendin-4 (marketed as Exenatide), which mimics the effects of GLP-1, is used to lower blood glucose in type 2 diabetes.

Recent studies have reported that GLP-1 improves the function of renal endothelial cells (which regulate blood clotting, immune response and blood vessel activity, among other critical functions, and are impaired by insulin resistance) and can prevent some renal pathologies in diabetic rodents. GLP-1 receptors (GLP-1R), which are abundant in the intestine, are also found in the endothelium and kidney.

The Joslin study investigated the effects of GLP-1 in non-diabetic and diabetic mice with an "overexpression" of the enzyme PKCβ (protein kinase C-beta) which is produced in excess when blood glucose is high. Excess PKCβ can lead to diabetes complications, including kidney disease. PKCβ enhances the action of angiotensin II (Ang II), a peptide hormone that affects renal filtration and blood flow and also regulates blood pressure, which increases inflammation and accelerates the progression of kidney damage.

The study looked at the interactions of GLP-1, PKC-beta and ANG II that affect GLP-1's protective action in renal endothelial cells. "We've been interested in diabetic kidney disease for a long time, particularly the role of PKCβ and Ang II in promoting kidney damage," says Dr. King. "We were interested in investigating how GLP-1 could protect against the effects of hyperglycemia on renal function."

Josin researchers made two major findings: They identified the mechanisms by which GLP-1 can induce protective actions on the glomerular (renal) endothelial cells by inhibiting the signaling pathway of Ang II and its pro-inflammatory effect; and demonstrated a dual signaling mechanism by which hyperglycemia, via PKCβ activation, can increase Ang II action and inhibit GLP-1's protective effects by reducing the expression of GLP-1 receptors in the glomerular . "We know that people with are more sensitive to Ang II; our data suggests one reason why," says Dr. King.

The results suggest that effective could be developed to enhance the effects of GLP-1R on the endothelium which may prevent glomerular endothelial dysfunction and slow the progression of diabetic nephropathy. "We now know that increased PKCβ decreases GLP-1R which makes the kidney less responsive to treatment with GLP-1-based drugs. Possible new treatments could combine PKCβ inhibitors with higher doses of GLP-1 agonists. GLP-1 is one potential pharmaceutical that could both lower glucose and minimize the toxic effects of Ang II to lower the risk of kidney diseases," says Dr. King.

Explore further: Importance of diabetes genetic variants unclear

Related Stories

Importance of diabetes genetic variants unclear

April 4, 2012
(HealthDay) -- Genetic variants associated with type 2 diabetes that affect glucagon-like peptide 1 (GLP-1) are not associated with GLP-1 levels or GLP-1-induced insulin secretion in healthy individuals, according to a study ...

Gut hormone leads to weight loss in overweight or obese patients

January 10, 2012
Giving overweight or obese patients a gut hormone that suppresses appetite leads to clinically beneficial weight loss as well as reduced blood pressure and cholesterol levels, finds a study published in the British Medical ...

Diet soda linked to increase in glucagon-like peptide 1 levels

March 22, 2012
(HealthDay) -- Drinking a diet soda before a glucose load is associated with increased glucagon-like peptide 1 (GLP-1) secretion in individuals with type 1 diabetes and healthy controls, but not in those with type 2 diabetes, ...

Research reveals hormone action that could lead to treatments for type 2 diabetes

September 30, 2011
(Medical Xpress) -- Researchers at the University of Cincinnati have discovered that the immediate improvement in blood sugar (blood glucose) for those with type 2 diabetes who undergo gastric bypass surgery is related to ...

Improving psoriasis with GLP-1 analogue therapy

December 13, 2011
(Medical Xpress) -- UCD clinician scientists and researchers from NUI Maynooth and Trinity College led by Conway Fellow, Professor Donal O’Shea have reported an improvement in the severity of psoriasis in patients following ...

Bile acids may hold clue to treat heart disease

December 6, 2011
Heart disease is a major cause of death in industrialised countries, and is strongly associated with obesity and diabetes. Many scientists believe that what links these conditions is a chronic, low-grade inflammation. The ...

Recommended for you

Researchers report new system to study chronic hepatitis B

July 25, 2017
Scientists from Princeton University's Department of Molecular Biology have successfully tested a cell-culture system that will allow researchers to perform laboratory-based studies of long-term hepatitis B virus (HBV) infections. ...

Research examines lung cell turnover as risk factor and target for treatment of influenza pneumonia

July 24, 2017
Influenza is a recurring global health threat that, according to the World Health Organization, is responsible for as many as 500,000 deaths every year, most due to influenza pneumonia, or viral pneumonia. Infection with ...

Scientists propose novel therapy to lessen risk of obesity-linked disease

July 24, 2017
With obesity related illnesses a global pandemic, researchers propose in the Journal of Clinical Investigation using a blood thinner to target molecular drivers of chronic metabolic inflammation in people eating high-fat ...

Raccoon roundworm—a hidden human parasite?

July 24, 2017
The raccoon that topples your trashcan and pillages your garden may leave more than just a mess. More likely than not, it also contaminates your yard with parasites—most notably, raccoon roundworms (Baylisascaris procyonis).

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.