Research shows nerve stimulation can reorganize brain

July 19, 2012 By Emily Martinez
Dr. Michael Kilgard helped lead a team that paired vagus nerve stimulation with physical movement to improve brain function.

(Medical Xpress) -- UT Dallas researchers recently demonstrated how nerve stimulation paired with specific experiences, such as movements or sounds, can reorganize the brain. This technology could lead to new treatments for stroke, tinnitus, autism and other disorders.

In a related paper, UT Dallas showed that they could alter the speed at which the brain works in laboratory animals by pairing stimulation of the vagus nerve with fast or slow sounds.

A team led by Dr. Robert Rennaker and Dr. Michael Kilgard looked at whether repeatedly pairing vagus nerve stimulation with a specific movement would change within the ’ primary motor cortex. To test the hypothesis, they paired the vagus nerve stimulation with movements of the forelimb in two groups of rats. The results were published in a recent issue of Cerebral Cortex.

After five days of stimulation and movement pairing, the researchers examined the brain activity in response to the stimulation. The rats who received the training along with the stimulation displayed large changes in the organization of the brain’s movement control system. The animals receiving identical motor training without stimulation pairing did not exhibit any brain changes, or plasticity.

People who suffer strokes or brain trauma often undergo rehabilitation that includes repeated movement of the affected limb in an effort to regain motor skills. It is believed that repeated use of the affected limb causes reorganization of the brain essential to recovery. The recent study suggests that pairing vagus nerve stimulation with standard therapy may result in more rapid and extensive reorganization of the brain, offering the potential for speeding and improving recovery following stroke, said Rennaker, associate professor in The University of Texas at Dallas’ School of Behavioral and Brain Sciences

“Our goal is to use the brain’s natural neuromodulatory systems to enhance the effectiveness of standard therapies,” Rennaker said. “Our studies in sensory and motor cortex suggest that the technique has the potential to enhance treatments for neurological conditions ranging from chronic pain to motor disorders. Future studies will investigate its effectiveness in treating cognitive impairments.”

Since vagus nerve stimulation has an excellent safety record in human patients with epilepsy, the technique provides a new method to treat brain conditions in which the timing of brain responses is abnormal, including dyslexia and schizophrenia.

In another paper in the journal Experimental Neurology, Kilgard led a team that paired vagus nerve stimulation with audio tones of varying speeds to alter the rate of activity within the rats’ brains. The team reported that this technique induced neural plasticity within the auditory cortex, which controls hearing.

The UT Dallas researchers are working with a device developed by MicroTransponder, a biotechnology firm affiliated with the University. MicroTransponder currently is testing a vagus therapy on human patients in Europe in hopes of reducing or eliminating the symptoms of , the debilitating disorder often described as “ringing in the ears.”

“Understanding how brain networks self-organize themselves is vitally important to developing new ways to rehabilitate patients diagnosed with , dyslexia, , schizophrenia and Alzheimer’s disease,” said Kilgard, a professor of neuroscience.

Treatment of neurological disease is currently limited to pharmacological, surgical or behavioral interventions. But this recent research indicates it may be possible to effectively manipulate the plasticity of the human brain for a variety of purposes. Patients then could benefit from activity intentionally directed toward rebuilding lost skills.

If subsequent studies confirm the UT Dallas findings, human patients may have access to more efficient therapies that are minimally invasive and avoid long-term use of drugs.

Explore further: Making temporary changes to brain could speed up learning, study reports

Related Stories

Making temporary changes to brain could speed up learning, study reports

April 13, 2011
In a breakthrough that may aid treatment of learning impairments, strokes, tinnitus and chronic pain, UT Dallas researchers have found that brain nerve stimulation accelerates learning in laboratory tests.

Nipples stimulate the same area of the brain as genitals do

August 5, 2011
A new study published in the Journal of Sexual Medicine reveals medical evidence that women’s nipples stimulate the brain in the same way that genital stimulation does, something most women already know.

Electrical stimulation to the brain makes learning easier

September 21, 2011
(Medical Xpress) -- A new study presented at the British Science Festival by Professor Heidi Johansen-Berg from the University of Oxford shows that the application of small electrical currents to specific parts of the brain ...

Migraine patients find pain relief in electrical brain stimulation

April 20, 2012
Chronic migraine sufferers saw significant pain relief after four weeks of electrical brain stimulation in the part of the brain responsible for voluntary movement, the motor cortex, according to a new study.

Recommended for you

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.