Oligodendroglia cells protect neurons against neurodegeneration

July 11, 2012

(Medical Xpress) -- Johns Hopkins researchers say they have discovered that the central nervous system's oligodendroglia cells, long believed to simply insulate nerves as they "fire" signals, are unexpectedly also vital to the survival of neurons. Damage to these insulators appears to contribute to brain injury in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease for the Yankee baseball great who died from the disease.

The discovery, described online in the journal Nature, suggests that a previously unknown -- and unexpected -- function of these cells is to supply nutrition to the principal brain cells, neurons. This new pathway may prove to be an important and novel for ALS, the researchers say, and potentially other diseases that attack the body's , such as multiple sclerosis.

"More than 100 years after their discovery, we have now found a fundamentally new property in the way oligodendroglia work in the brain, laying the foundation for a new approach to try to treat debilitating ," says Jeffrey D. Rothstein, M.D., Ph.D., a professor of neurology and neuroscience at the Johns Hopkins University School of Medicine, and the study's leader. "We've added a whole new category to what they do in the brain."

The cells responsible for the transfer of information and around the body, neurons work by transferring electrical charges from neuron to neuron. Axons, the wire-like extensions of the neurons, help move the messages, in some cases over many feet, from cell to cell. Oligodendroglia insulate axons, like rubber coating around an electrical wire, to speed up the conduction of information. Axonal death is a hallmark of ALS and most other neurodegenerative disorders, Rothstein says.

Rothstein and his colleagues say the other principal brain cells, the astroglia, were believed to be primarily responsible for providing energy to neurons in the form of glucose, but their experiments show that oligodendroglia are surprisingly crucial in feeding neurons -- in the form of less energy-rich lactate, without which neurons and their axons die. Lactate has long been seen as a minor player in this process, but the Johns Hopkins team says it appears to be far more important to nerve cell survival. Moreover, they found that the protein MCT1, the dominant transporter of lactate in the brain, is only found in oligodendroglia.

Rothstein says their discovery was rooted in experiments during which scientists, using mice, knocked out the gene that makes the MCT1 protein and saw axons begin to die, even though they were still getting plenty of glucose.

As part of these experiments, the researchers engineered mice whose cells would light up if they were expressing MCT1. The scientists then determined that only oligodendroglia cells lit up, showing that MCTI is located on this type of cell alone. They also knocked out the MCT1 in cell cultures and found that would begin to die, but would recover when fed lactate, proving the importance of MCT1 in providing this nutritional compound. They conducted the same experiments in mice and got similar results.

Finally, the researchers turned their attention to ALS, a disease where they had recently uncovered abnormalities related to oligodendroglia. In ALS mice, they found that MCT1 was missing in well before the disease developed, and they found similar results in ALS patients. Rothstein says the findings suggest that oligodendroglia injury -- specifically injury to the mechanism that produces MCT1 -- may be an important event in the onset and progression of ALS.

Rothstein, who is director of the Johns Hopkins University School of Medicine's Brain Science Institute, says he hopes further research can establish that the activation of MCT1 in people will protect axons in those with ALS and other degenerative diseases.

The study was supported by the National Institutes of Health's National Institute for Neurological Disorders and Strokes (NS33958).

Explore further: Scientists reveal new survival mechanism for neurons

More information: DOI: 10.1038/nature11314

Related Stories

Scientists reveal new survival mechanism for neurons

August 30, 2011
(Medical Xpress) -- Nerve cells that regulate everything from heart muscle to salivary glands send out projections known as axons to their targets. By way of these axonal processes, neurons control target function and receive ...

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Genetically altered mice bear some hallmarks of human bipolar behavior

September 18, 2017
Johns Hopkins researchers report they have genetically engineered mice that display many of the behavioral hallmarks of human bipolar disorder, and that the abnormal behaviors the rodents show can be reversed using well-established ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.