Poisoning from industrial compounds can cause similar effects to ALS

July 17, 2012, IDIBELL-Bellvitge Biomedical Research Institute

Researchers from the Bellvitge Biomedical Research Institute (IDIBELL) at the University of Barcelona (UB) have coordinated a research into how the IDPN nitrile causes neurological syndromes similar to those of the amyotrophic lateral sclerosis (ALS), a severe neuromuscular degenerative disease. The study, led by Jordi Llorens, has been recently published in Neuropathology and Applied Neurobiology journal.

Nitriles, containing the cyano (-CN) group, are ubiquitous in nature and have diverse applications in industry. In nature they appear as cyanogenic glycosides, for example in bitter almonds, and as aminonitriles, in some legumes. In industry they are used as solvents and intermediates in the synthesis of plastics, , resins and pharmaceutical products, among others. The consumption by humans or animals of certain nitriles can cause symptoms similar to . This fact suggests that the release of this compound is responsible for acute intoxication. Some nitriles realease less cyanide or do it more slowly, causing neurotoxicity and neurological syndromes.

In a variety of diseases of the nervous system appears abnormal accumulation of neurofilaments, fibers that confer stiffness to neurons. Specifically, in amyotrophic lateral sclerosis (ALS) are observed protrusions formed by a large number of neurofilaments in the axons of .

In the study, researchers have observed accumulations of neurofilaments strikingly similar to those occurring in ALS, in exposed to IDPN (3.3'-iminodipropionitril). Because of this similarity, the researchers have studied the effect of IDPN to understand the biology of neurofilaments in ALS disease. The disease and the IDPN poisoning cause axonopathy, an injury to . The novelty of this study is the observation that the axonopathy causes a marked loss of neurofilaments in the terminals of motor neurons. This observation is relevant because the refraction of the terminals is the critical factor in the degeneration of the motor neuron.

The research coordinator explained that "the lack of neurofilaments in the area of ​​the neuromuscular junction can have an impact on the function or stability of the union, contributing to its retraction and subsequent regeneration of the neuron".

Potential clinical applications

Due to the similarity between the proximal accumulations of neurofilaments between the animal model of IDPN and ALS, the researchers predict that the neuromuscular junctions of patients with show a lack of neurofilaments similar to that observed in the animal model. The loss of neurofilament terminals could be a pathogenic factor in the disease.

It is increasingly clear that ALS is a multifactorial disease in which genetic and environmental influences cause proximal axonopathy. These factors could alter the neuromuscular junction through the emptying mechanism of neurofilaments observed in IDPN intoxication. In addition, the data indicate that IDPN seems a useful tool for inclusion in multivariate animal models of disease.

Explore further: Disease progression halted in rat model of Lou Gehrig's disease

More information: Soler-Martin C, U Vilardosa, Saldana-Ruiz S, Garcia N, Llorens J. Loss of neurofilaments in the neuromuscular junction in a rat model of proximal axonopathy. Neuropathology and Applied Neurobiology 2012 Feb, 38 (1):61-71.

Related Stories

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.