Potential treatment target identified in an animal model of pancreatic cancer

July 1, 2012

Detailed analysis of genes expressed in circulating tumor cells (CTCs) -- cells that break off from solid tumors and travel through the bloodstream -- has identified a potential treatment target in metastatic pancreatic cancer.

In a report that will appear in Nature and has received advance online publication, Massachusetts General Hospital (MGH) Cancer Center investigators describe finding increased expression of WNT2, a member of a known family of , in CTCs from a mouse model of the deadly and from human patients. The researchers were able to capture the CTCs -– present in the at extremely low levels –- using a microchip-based device previously developed by members of the team.

"This proof of principle study is the first to show that, by studying both mouse and human pancreatic cancer cells captured with this device, we can dissect genes that are overexpressed in these cells and identify signaling pathways that allow them to survive in the bloodstream," says Daniel Haber, MD, PhD, director of the MGH Cancer Center and senior author of the Nature paper. "We also found that targeting a key step in these pathways can reduce metastatic potential, which is critically important for control of pancreatic cancer. This study would not have been possible without a way to isolate rare CTCs from both mouse models and human patients."

Using the second-generation version of the CTC-chip, developed in collaboration with the MGH Center for Engineering in Medicine, the researchers first captured CTCs from mice genetically programmed to develop pancreatic cancer, one of the most deadly tumors since it is rarely diagnosed before spreading. Analysis of RNA expression levels in pancreatic CTCs, in primary tumor cells, and in normal pancreatic tissue identified several genes with significantly increased expression in the CTCs. One of these, WNT2, belongs to a family of developmental genes often overexpressed in cancer, and while the gene's expression in pancreatic tumors was higher than in normal tissue, WNT2 expression was significantly more elevated in both CTCs and metastatic cells.

Closer analysis of cells from several individual animals confirmed that WNT2 was highly expressed in pancreatic cancer CTCs and in metastases, but WNT2-expressing cells were found to be rare in primary tumors. Testing the consequences of WNT2 expression indicated that cancer cells expressing the gene were more likely to generate metastases, probably because of an improved ability to survive after dislodging from the primary tumor and entering the bloodstream.

The researchers tested several agents known to inhibit the activity of molecules in the WNT2 pathway their results implied was associated with pancreatic cancer and found that inhibition of TGF-beta activated kinase 1 (TAK1) prevented metastasis-associated activities in cultured CTCs. Knocking down TAK1 expression with RNA interference also reduced the development of metastasis in mice injected with WNT2-expressing CTCs. A significant percentage of tested CTCs from patients with metastatic pancreatic cancer were found to express WNT-related , along with other components of the signaling pathway associated with pancreatic cancer in the .

"The picture in more complicated in humans, since multiple WNTs are upregulated," Haber says. "But the TAK1 inhibitor we tested appears to have an effect on diverse WNT pathways involved in the survival of pancreatic CTCs. We previously reported that TAK1 inhibition has promise for treating a genetically defined subset of colon cancers, and these findings now extend the relevance of the TAK1 pathway to suppression of blood-borne metastasis in . Considerable more work will be needed to fully understand the critical pathways involved, but it is our hope that TAK1 inhibitors will ultimately be developed for clinical testing."

Explore further: Not all tumor cells are equal: Study reveals huge genetic diversity in cells shed by tumors

Related Stories

Not all tumor cells are equal: Study reveals huge genetic diversity in cells shed by tumors

May 7, 2012
The cells that slough off from a cancerous tumor into the bloodstream are a genetically diverse bunch, Stanford University School of Medicine researchers have found. Some have genes turned on that give them the potential ...

Potential treatment target for KRAS-mutated colon cancer found

February 16, 2012
Researchers from the Massachusetts General Hospital (MGH) Cancer Center have identified a new potential strategy for treating colon tumors driven by mutations in the KRAS gene, which usually resist both conventional and targeted ...

Circulating tumor cells not linked to survival in newly diagnosed inflammatory breast cancer

December 9, 2011
The presence of circulating tumor cells in the blood appears to have no relationship to survival in women who have just been diagnosed with inflammatory breast cancer, according to new research from Fox Chase Cancer Center. ...

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.