Two proteins offer a 'clearer' way to treat Huntington's disease

July 11, 2012
This is a human neuron. UC San Diego scientists have identified a pair of proteins that help clear away other misfolded proteins responsible for the progressive degeneration of brain cells in Huntington's disease. Credit: UC San Diego School of Medicine

In a paper published in the July 11 online issue of Science Translational Medicine, researchers at the University of California, San Diego School of Medicine have identified two key regulatory proteins critical to clearing away misfolded proteins that accumulate and cause the progressive, deadly neurodegeneration of Huntington's disease (HD).

The findings explain a fundamental aspect of how HD wreaks havoc within cells and provides "clear, therapeutic opportunities," said principal investigator Albert R. La Spada, MD, PhD, professor of cellular and , chief of the Division of Genetics in the Department of Pediatrics and associate director of the Institute for Genomic Medicine at UC San Diego.

"We think the implications are significant," said La Spada. "It's a lead we can vigorously pursue, not just for Huntington's disease, but also for similar like Parkinson's disease and maybe even Alzheimer's disease."

In HD, an inherited mutation in the huntingtin (htt) gene results in misfolded htt proteins accumulating in certain central , leading to of involuntary movement control, and psychological problems. More than 30,000 Americans have HD. There are no effective treatments currently to either cure the disease or slow its progression.

La Spada and colleagues focused on a protein called PGC-1alpha, which helps regulate the creation and operation of mitochondria, the tiny organelles that generate the fuel required for every cell to function.

"It's all about energy," La Spada said. "Neurons have a constant, high demand for it. They're always on the edge for maintaining adequate levels of energy production. PGC-1alpha regulates the function of that promote the creation of mitochondria and allow them to run at full capacity."

Previous studies by La Spada and others discovered that the mutant form of the htt gene interfered with normal levels and functioning of PGC-1alpha. "This study confirms that," La Spada said. More surprising was the discovery that elevated levels of PGC-1alpha in a mouse model of HD virtually eliminated the problematic misfolded proteins.

Specifically, PGC-1alpha influenced expression of another protein vital to autophagy – the process in which healthy cells degrade and recycle old, unneeded or dangerous parts and products, including oxidative, damaging molecules generated by metabolism. For neurons, which must last a lifetime, the self-renewal is essential to survival.

"Mitochondria get beat up and need to be recycled," La Spada said. "PGC-1alpha drives this pathway through another protein called transcription factor EB or TFEB. We were unaware of this connection before, because TFEB is a relatively new player, though clearly emerging as a leading actor. We discovered that even without PGC-1alpha induction, TFEB can prevent htt aggregation and neurotoxicity."

In their experiments, HD mice crossbred with mice that produced greater levels of PGC-1alpha showed dramatic improvement. Production of misfolded proteins was essentially eliminated and the mice behaved normally. "Degeneration of brain cells is prevented. Neurons don't die," said La Spada.

PGC-1alpha and TFEB provide two new therapeutic targets for , according to La Spada. "If you can induce the bioenergetics and protein quality control pathways of nervous system cells to function properly, by activating the PGC-1alpha pathway and promoting greater TFEB function, you stand a good chance of maintaining neural function for an extended period of time. If we could achieve the level of increased function necessary to eliminate misfolded proteins, we might nip the disease process in the bud. That would go a long way toward treating this devastating condition."

Explore further: Neurological disorder impacts brain cells differently

Related Stories

Neurological disorder impacts brain cells differently

November 9, 2011
In a paper published in the Nov. 9 issue of the Journal of Neuroscience, researchers at the University of California, San Diego School of Medicine and University of Washington describe in deeper detail the pathology of a ...

Recommended for you

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.