Reconnecting nerves to their target muscles

July 31, 2012
Reconnecting nerves to their target muscles
Credit: Thinkstock

European researchers are working toward restoration of mobility in neuromuscular disease and trauma. Using miniature scaffolds to guide nerve regeneration, they are seeking to ensure proper functional connections between peripheral nerves and their target muscles.

Peripheral nerves are those located outside the (CNS) (the brain and spinal chord). They are like insulated electrical cables whose final connection points must correspond to the signals received by each peripheral nerve from within the CNS.

Thus, send the signal to specific muscles to either contract or relax. The muscles in doing so then move the bones to which they are connected in logical and useful ways.

In the case of tissue damage to the neuromuscular system (NMS) due to disease or trauma, peripheral nerve lesions result in an inability to transmit signals to the muscles.

Corresponding efforts toward have fallen short given the difficulty of organised re-enervation leading to restoration of original function.

In other words, progress has been made in regenerating nervous tissue but it is still difficult to regenerate it in a way that forms functionally relevant . Like an old-fashioned switchboard, if the incoming call (nervous signal) is not connected to the appropriate person (specific ) the message is not transmitted properly.

Carbon nanotubes (CNTs), literally nano-scale tubes of carbon, are promising potential tissue scaffolds and may be just what the NMS needs.

initiated the ‘Biocompatability of carbon nanoparticles with tissues of the neuromuscular system’ (NMS-CNT) to build a long-term European consortium working toward the use of carbon nanoparticles in tissue repair of the NMS.

Scientists evaluated a variety of configurations including single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs) and ultra-long single-walled CNTs (ULSWCNTs) in particular with respect to solubility.

Ongoing research is directed at enhancing the solubility of ULSWCNTs. These are particularly promising candidates for guided nerve regeneration given their longer length and relatively straight geometry. In addition, investigators are carrying out cytotoxicity tests as well as in vivo testing in animal models.

Completion of the project should provide the scientific foundations for development of CNT-based guided tissue regeneration in the NMS and eventual restoration of mobility in thousands of people with nervous system diseases or traumatic injuries.

Explore further: Race to nerve regeneration: faster is better

Related Stories

Race to nerve regeneration: faster is better

October 3, 2011
A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

Researchers identify protein required to regrow injured nerves in limbs

June 20, 2012
A protein required to regrow injured peripheral nerves has been identified by researchers at Washington University School of Medicine in St. Louis.

An app for your brain: new educational tool developed by U-M doctor

July 12, 2011
With a new application developed by a U-M neurologist, better understanding of the anatomy of the peripheral nervous system can be found right on your iPhone.

Recommended for you

Long-lasting blood vessel repair in animals via stem cells

October 23, 2017
Stem cell researchers at Emory University School of Medicine have made an advance toward having a long-lasting "repair caulk" for blood vessels. The research could form the basis of a treatment for peripheral artery disease, ...

Study reveals connection between microbiome and autoimmune disorders

October 23, 2017
Many people associate the word "bacteria" with something dirty and disgusting. Dr. Pere Santamaria disagrees. Called the microbiome, the bacteria in our bodies have all kinds of positive effects on our health, Santamaria ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.