Scientists link 'oncometabolite' to onset of acute myeloid leukemia

July 4, 2012

A team of international scientists led by principal investigator Dr. Tak Mak at the Princess Margaret Cancer Centre, University Health Network, has identified a causative link between the product of a mutated metabolic enzyme and the onset of acute myeloid leukemia (AML), one of the most common types of leukemia in adults.

Called an "oncometabolite" for its role in cancer metabolism, the metabolite2-hydroxyglutarate (2HG) is a by-product of a gene mutation of an enzyme known as isocitrate dehydrogenase (IDH).

Says Dr. Tak Mak of the findings published today in Nature: "For the first time, we have demonstrated how a metabolite can cause cancer. This sets the stage for developing inhibitors to block the mutation and prevent the production of this disease-initiating enzyme." The research team included scientists at Weill Cornell Medical College, New York City, and Agios Pharmaceuticals, Cambridge, Massachusetts.

Dr. Mak, Director, The Campbell Family Institute for at Princess Margaret Hospital, is an internationally acclaimed immunologist renowned for his 1984 discovery of cloning the human T-cell receptor. He is also Professor, University of Toronto, in the Departments of Medical Biophysics and Immunology.

The connection between cancer and metabolism has fascinated scientists at Agios and Dr. Mak, who were the first to identify the oncometabolite in research published in Nature (2009) and The (2010). The IDH gene mutation was initially discovered in brain cancers in 2008 by American scientists at Johns Hopkins in Baltimore and subsequently also linked to leukemia.

In the lab, Dr. Mak's team genetically engineered a mouse model with the mutation in its blood system to mimic human AML. They discovered that the launches the perfect storm for the oncometabolite to trigger the blood system to increase the stem cells pool and reduce mature blood cells in the bone marrow. The resulting condition creates a situation with similarities to myelodysplastic syndrome – one of the precursors to this type of leukemia.

"This is one of the most common mutations in AML," says Dr. Mak. "We also found that it is the common mutation in about 40% of a specific type of lymphoma." The mutation is also known to be involved in about 70-90% of low-grade brain cancers (glioblastomas gliomas) and a variety of other cancers.

Dr. Mak's interest in the blood system began as a young researcher three decades ago with Drs. Ernest McCulloch and James Till, the acclaimed "fathers of stem cell science" at Ontario Cancer Institute, the research arm of Princess Margaret Hospital, whose 1961 discovery of stem cells launched the new field.

Explore further: Cancer scientists discover new way breast cancer cells adapt to environmental stress

Related Stories

Cancer scientists discover new way breast cancer cells adapt to environmental stress

May 15, 2011
An international research team led by Dr. Tak Mak, Director, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital (PMH), has discovered a new aspect of "metabolic transformation", the process ...

Clinical importance of leukemia stem cells validated

August 28, 2011
Cancer scientists have long debated whether all cells within a tumour are equal or whether some cancer cells are more potent - a question that has been highly investigated in experimental models in the last decade. Research ...

Gene mutation contributes to leukemia by enhancing function of blood stem cells

July 1, 2011
Researchers at Memorial Sloan-Kettering Cancer Center and New York University have discovered how a mutation in the gene known as TET2 contributes to the development of some leukemias. When a mutation in TET2 occurs, it enhances ...

Recommended for you

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.