New melanoma driver genes found in largest DNA sequencing study to date

July 29, 2012 By Helen Dodson
New melanoma driver genes found in largest DNA sequencing study to date
The Yale study used DNA sequencing to obtain the most comprehensive picture yet of the molecular landscape of melanoma. (Illustration by Michael Helfenbein)

(Medical Xpress) -- Yale Cancer Center geneticists, biochemists, and structural biologists have painted the most comprehensive picture yet of the molecular landscape of melanoma, a highly aggressive and often deadly skin cancer. The study appears in the July 29 advance online publication of Nature Genetics.

Melanoma, precipitated mainly by excessive exposure to the sun’s ultra-violet (UV) radiation, causes the vast majority of all deaths related to skin cancer. There will be around 76,000 new cases of melanoma and 9,000 deaths from the disease in the United States this year.

The Yale study used powerful DNA sequencing technologies to examine 147 melanomas originating from both sun-exposed and sun-shielded sites.

The study revealed an excess of UV-induced mutations in sun-exposed melanomas. Most of these are passenger mutations that do not have a functional role in melanoma. “We devised a mathematical model to sort out the relevant DNA alterations from over 25,000 total mutations,” says lead author Michael Krauthammer, associate professor of pathology, who directed the bioinformatics effort of the study.

The analysis identified a frequent “gain-of-function” mutation in the RAC1 gene that has all the hallmarks of UV-damage. The study provided evidence that the mutant protein induces accelerated growth and movements among normal pigment cells, which are melanoma’s cells of origin. “It likely occurs at an early stage of tumor development and promotes malignant cell growth and spread to distant sites,” said corresponding author Ruth Halaban, senior research scientist at Yale School of Medicine and a member of Yale Cancer Center.

The Yale scientists say the RAC1 oncogenic mutation occurred in about 9% of melanomas from sun-exposed skin, and is the third most frequent mutation after the known BRAF and NRAS. They believe the prevalence of RAC1 mutation warrants development of therapies targeting that particular pathway.

The team also identified mutations that disable proteins — known as tumor suppressors — which suppress malignancy. Notably, the mutated protein known as PPP6C occurred only in tumors already mutated in BRAF and NRAS genes. “Our study mapped out a new, cooperative pathway for cancer development,” Halaban explained.

Finally, the study reveals new insights into the rarer melanomas from parts of the body shielded from the sun. Instead of mutations, these melanomas had duplicate copies of known oncogenes.

Explore further: Panel of melanoma mutations opens door to new treatment possibilities

Related Stories

Panel of melanoma mutations opens door to new treatment possibilities

November 15, 2011
Researchers have developed a new genetic screening tool that will aid in the investigation of possible treatments for patients with melanoma and the unique genetic mutations that may accompany the disease, according to data ...

Second mutation in BRAF-mutated melanoma doesn't contribute to resistance

April 1, 2012
A second mutation found in the tumors of patients with BRAF-mutated metastatic melanoma does not contribute to resistance to BRAF inhibitor drugs, a finding that runs counter to what scientists expected to be true.

Uncommon BRAF mutation in melanoma sensitive to MEK inhibitor drug therapy

July 16, 2012
An uncommon mutation of the BRAF gene in melanoma patients has been found to respond to MEK inhibitor drugs, providing a rationale for routine screening and therapy in melanoma patients who harbor the BRAF L597 mutation.

Scientists discover melanoma-driving genetic changes caused by sun damage

July 19, 2012
It's been a burning question in melanoma research: Tumor cells are full of ultraviolet (UV)-induced genetic damage caused by sunlight exposure, but which mutations drive this cancer?

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.