New melanoma driver genes found in largest DNA sequencing study to date

July 29, 2012 By Helen Dodson, Yale University
New melanoma driver genes found in largest DNA sequencing study to date
The Yale study used DNA sequencing to obtain the most comprehensive picture yet of the molecular landscape of melanoma. (Illustration by Michael Helfenbein)

(Medical Xpress) -- Yale Cancer Center geneticists, biochemists, and structural biologists have painted the most comprehensive picture yet of the molecular landscape of melanoma, a highly aggressive and often deadly skin cancer. The study appears in the July 29 advance online publication of Nature Genetics.

Melanoma, precipitated mainly by excessive exposure to the sun’s ultra-violet (UV) radiation, causes the vast majority of all deaths related to skin cancer. There will be around 76,000 new cases of melanoma and 9,000 deaths from the disease in the United States this year.

The Yale study used powerful DNA sequencing technologies to examine 147 melanomas originating from both sun-exposed and sun-shielded sites.

The study revealed an excess of UV-induced mutations in sun-exposed melanomas. Most of these are passenger mutations that do not have a functional role in melanoma. “We devised a mathematical model to sort out the relevant DNA alterations from over 25,000 total mutations,” says lead author Michael Krauthammer, associate professor of pathology, who directed the bioinformatics effort of the study.

The analysis identified a frequent “gain-of-function” mutation in the RAC1 gene that has all the hallmarks of UV-damage. The study provided evidence that the mutant protein induces accelerated growth and movements among normal pigment cells, which are melanoma’s cells of origin. “It likely occurs at an early stage of tumor development and promotes malignant cell growth and spread to distant sites,” said corresponding author Ruth Halaban, senior research scientist at Yale School of Medicine and a member of Yale Cancer Center.

The Yale scientists say the RAC1 oncogenic mutation occurred in about 9% of melanomas from sun-exposed skin, and is the third most frequent mutation after the known BRAF and NRAS. They believe the prevalence of RAC1 mutation warrants development of therapies targeting that particular pathway.

The team also identified mutations that disable proteins — known as tumor suppressors — which suppress malignancy. Notably, the mutated protein known as PPP6C occurred only in tumors already mutated in BRAF and NRAS genes. “Our study mapped out a new, cooperative pathway for cancer development,” Halaban explained.

Finally, the study reveals new insights into the rarer melanomas from parts of the body shielded from the sun. Instead of mutations, these melanomas had duplicate copies of known oncogenes.

Explore further: Panel of melanoma mutations opens door to new treatment possibilities

Related Stories

Panel of melanoma mutations opens door to new treatment possibilities

November 15, 2011
Researchers have developed a new genetic screening tool that will aid in the investigation of possible treatments for patients with melanoma and the unique genetic mutations that may accompany the disease, according to data ...

Second mutation in BRAF-mutated melanoma doesn't contribute to resistance

April 1, 2012
A second mutation found in the tumors of patients with BRAF-mutated metastatic melanoma does not contribute to resistance to BRAF inhibitor drugs, a finding that runs counter to what scientists expected to be true.

Uncommon BRAF mutation in melanoma sensitive to MEK inhibitor drug therapy

July 16, 2012
An uncommon mutation of the BRAF gene in melanoma patients has been found to respond to MEK inhibitor drugs, providing a rationale for routine screening and therapy in melanoma patients who harbor the BRAF L597 mutation.

Scientists discover melanoma-driving genetic changes caused by sun damage

July 19, 2012
It's been a burning question in melanoma research: Tumor cells are full of ultraviolet (UV)-induced genetic damage caused by sunlight exposure, but which mutations drive this cancer?

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.