Team develops better understanding of memory retrieval between children and adults

July 24, 2012

Neuroscientists from Wayne State University and the Massachusetts Institute of Technology (MIT) are taking a deeper look into how the brain mechanisms for memory retrieval differ between adults and children. While the memory systems are the same in many ways, the researchers have learned that crucial functions with relevance to learning and education differ. The team's findings were published on July 17, 2012, in the Journal of Neuroscience.

According to lead author Noa Ofen, Ph.D., assistant professor in WSU's Institute of Gerontology and Department of Pediatrics, cognitive ability, including the ability to learn and remember new information, dramatically changes between childhood and adulthood. This ability parallels with dramatic changes that occur in the structure and function of the brain during these periods.

In the study, "The Development of Associated with Successful of Scenes," Ofen and her collaborative team tested the development of neural underpinnings of memory from childhood to . The team of researchers exposed participants to pictures of scenes and then showed them the same scenes mixed with new ones and asked them to judge whether each picture was presented earlier. Participants made retrieval judgments while researchers collected images of their brains with (MRI).

Using this method, the researchers were able to see how the brain remembers. "Our results suggest that cortical regions related to attentional or strategic control show the greatest developmental changes for memory retrieval," said Ofen.

The researchers said that older participants used the cortical regions more than younger participants when correctly retrieving past experiences.

"We were interested to see whether there are changes in the connectivity of regions in the brain that support memory retrieval," Ofen added. "We found changes in connectivity of memory-related regions. In particular, the developmental change in connectivity between regions was profound even without a developmental change in the recruitment of those regions, suggesting that functional brain connectivity is an important aspect of developmental changes in the brain."

This study marks the first time that the development of connectivity within memory systems in the brain has been tested, and the results suggest that the brain continues to rearrange connections to achieve adult-like performance during development.

Ofen and her research team plan to continue research in this area, focused on modeling brain network connectivity, and applying these methods to study abnormal brain development.

Explore further: The big picture: Long-term imaging reveals intriguing patterns of human brain maturation

Related Stories

The big picture: Long-term imaging reveals intriguing patterns of human brain maturation

December 7, 2011
Neuroimaging has provided fascinating insight into the dynamic nature of human brain maturation. However, most studies of developmental changes in brain anatomy have considered individual locations in relative isolation from ...

Activity in brain networks related to features of depression

April 3, 2012
Depressed individuals with a tendency to ruminate on negative thoughts, i.e. to repeatedly think about particular negative thoughts or memories, show different patterns of brain network activation compared to healthy individuals, ...

Depressed? Crossed wires in the brain

December 8, 2011
Major depressive disorder (MDD) is a severely debilitating illness characterized by sadness and an inability to cope. Not only does it affect a person's ability to concentrate and make decisions, it also alters their ability ...

Autism risk gene linked to differences in brain structure

March 21, 2012
Healthy individuals who carry a gene variation linked to an increased risk of autism have structural differences in their brains that may help explain how the gene affects brain function and increases vulnerability for autism. ...

Recommended for you

Worms learn to smell danger

October 17, 2017
Worms can learn. And the ways they learn and respond to danger could lead scientists to new treatments for people with neurodegenerative diseases.

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

fMRI scans reveal why pain tolerance goes up during female orgasm and shows brain does not turn off

October 13, 2017
(Medical Xpress)—A team of researchers at Rutgers University has determined why women are able to tolerate more pain during the time leading up to and during orgasm. In their paper published in the Journal of Sexual Medicine, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.