UCLA study to determine if copper surfaces can reduce hospital-acquired infections

July 9, 2012

Hospital-acquired infections are a huge public health burden, and hospital environments play a key role in harboring potentially deadly bacteria such as E. coli, C. difficile and methicillin-resistant Staphylococcus aureus.

These microbes may persist for extended periods in the hospital, on surfaces such as bed rails, doorknobs, chairs, tray tables, and even call buttons in patient rooms.

Copper surfaces, which are not routinely used in hospitals, are known to kill bacteria on contact, and studies have found much lower levels of bacteria living on copper surfaces than on standard hospital surfaces.

Now, an interdisciplinary team from UCLA is taking this research to the next level. In one of the first randomized clinical trials of its kind, researchers will determine if the reduction of bacteria due to the use of copper will result in a decreased number of .

Funding for the $2.5 million study will be provided by an RO1 grant (HS021188-01) from the Agency for Healthcare Research and Quality, part of the U.S. Department of Health and Human Services. The project will involve teams from the David Geffen School of Medicine at UCLA, the UCLA Fielding School of Public Health and the Henry Samueli School of Engineering and Applied Science. The collaborative research initiative is a project of the UCLA Sustainable Technology and Policy Program.

For the clinical trial, two intensive care units at Ronald Reagan UCLA Medical Center will be outfitted with copper, sham stainless steel, or conventional surfaces such as plastic or other types of coatings. Over a four-year period, all three surface types will be sampled for bacteria levels, and patient-infection outcomes rates will be compared among the three surfaces.

"We will be studying if lowering the level of bacteria on hospital surfaces results in reduced infection rates in patients, better outcomes and even lower costs," said the project's principal investigator, Dr. Daniel Uslan, director of the antimicrobial stewardship program at the Geffen School of Medicine and an assistant clinical professor of medicine in the division of infectious diseases.

Additional environmental microbiologic studies and evaluations of surface cleaning will be included in the research, as well as a detailed cost–benefit analysis.

Dr. Peter Sinsheimer, executive director of the UCLA Sustainable Technology and Policy Program, a joint initiative of the Fielding School of Public Health and the UCLA School of Law, helped arrange the interdisciplinary collaborations.

"Being at UCLA makes it easy to pull together diverse teams of top-flight scientists to conduct such important prevention-based research," said Sinsheimer, whose program focuses on primary health prevention through materials substitution.

The initial idea for the hospital-based study came from Sinsheimer's research on the viability of alternatives to lead-based copper piping in delivering safer drinking water.

Hospital surfaces selected for the study will include bed rails, chairs, a bedside table that can also be positioned on top of the bed, and a mobile treatment cart-top used by nursing staff that includes handles, a keyboard and a mouse.

A team at UCLA Engineering will assist with the testing of the copper and other surfaces used in the clinical trial.

"We will be incorporating copper, plastic or sham stainless steel materials into the selected everyday surfaces used by patients and staff in the hospital," said Vijay Gupta, a professor of mechanical and aerospace engineering.

The cost-effectiveness analysis will be conducted by Dr. Gerald Kominski, director of the UCLA Center for Health Policy Research and a professor in the department of health policy and management at the Fielding School of .

"Finding effective interventions to reduce hospital infection rates in a cost-effective manner is an emerging priority for U.S. hospitals," Kominski said. "This study will provide valuable information on whether copper-touch surfaces are a cost-effective technology for achieving this goal."

Explore further: Copper reduces infection risk by more than 40 percent

Related Stories

Copper reduces infection risk by more than 40 percent

July 1, 2011
Professor Bill Keevil, Head of the Microbiology Group and Director of the Environmental Healthcare Unit at the University of Southampton, has presented research into the mechanism by which copper exerts its antimicrobial ...

Study proves new technology kills bacteria

October 20, 2011
Results from a comprehensive multi-site clinical trial demonstrated that the use of antimicrobial copper surfaces in intensive care unit rooms reduced the amount of bacteria in the rooms by 97 percent and resulted in a 41 ...

Antibacterial stainless steel created

July 19, 2011
Materials scientists at the University of Birmingham have devised a way of making stainless steel surfaces resistant to bacteria in a project funded by the Engineering and Physical Sciences Research Council which culminated ...

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

copperkeyboard
not rated yet Aug 02, 2012
Operator Interface Technology would be a good source for copper keyboards for your trial

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.