Vaccine research shows vigilance needed against evolution of more-virulent malaria

July 31, 2012 by Barbara K. Kennedy
The image shows red blood cells, some of which are infected with ring-stage malaria parasites. Parasites invade, replicate and rupture from red blood cells multiple times during an infection. Credit: Dr. Mae Melvin/US Centers for Disease Control and Prevention

Malaria parasites evolving in vaccinated laboratory mice become more virulent, according to research at Penn State University. The mice were injected with a critical component of several candidate human malaria vaccines that now are being evaluated in clinical trials. "Our research shows immunization with this particular type of malaria vaccine can create ecological conditions that favor the evolution of parasites that cause more severe disease in unvaccinated mice," said Andrew Read, Alumni Professor of Biological Sciences at Penn State.

"We are a long way from being able to assess the likelihood of this process occurring in humans, but our research suggests the need for . It is possible that more-virulent strains of might evolve if a goes into widespread use," Read said. The research, which will be published in the 31 July 2012 issue of the scientific journal PLoS Biology, showed that more-virulent malaria evolved in response to vaccination, but the exact mechanism is still a mystery. It was not due to changes in the part of the parasite targeted by the vaccine.

No malaria vaccine ever has been approved for widespread use. "Effective malaria vaccines are notoriously difficult to develop because the malaria parasite is very complex. Hundreds of different malaria strains exist simultaneously within any local region where the disease is prevalent," Read said. Most vaccine developers use only small sections of the malaria parasite to produce an antigen molecule that then becomes a key ingredient in a highly purified malaria vaccine. Read's lab tested the antigen AMA-1, a component of several such vaccines now in various stages of clinical trials.

"Our followed clues from and earlier experiments that suggested that some malaria vaccines could favor the evolution of more-virulent malaria parasites," Read said. If candidate vaccines do not completely eliminate all the malaria parasites, the parasites that remain have opportunities to evolve. A mosquito then could transfer the evolved parasite from the vaccinated person into a new host -- a process called leaking. "Leaky vaccines create a situation that further fosters parasite evolution," Read said.

A female Anopheles albimanus mosquito feeding on a human host and engorged with blood. Credit: Centers for Disease Control and Prevention, public domain image.

The Penn State study found that parasites causing worse malaria symptoms in unvaccinated mice evolved after "leaking" consecutively through as few as 10 vaccinated mice. "The parasites that are able to survive in the immunized hosts must be stronger after having survived exposure to the vaccine," Read said. "The vaccine-induced immunity apparently removed the less virulent malaria parasites, but left the more virulent ones."

The AMA-1 antigen used in the Penn State study triggers the body to make anti-malaria antibodies. These antibodies recognize the AMA-1 antigen on the parasites and disable the malaria infection. The shape of the antigen ensures that the antibodies can bind securely with the malaria parasite -- like pieces in a jigsaw puzzle -- an important step in producing immunity. Scientists already knew that vaccines become obsolete when evolutionary mutations change the parasite's antigen structure in such a way that the antibody is not able to lock onto the targeted part of the parasite. But the Penn State study showed the evolved within the vaccinated mice even without any detectable changes in the antibody target on the parasite.

"We were surprised to find that more- of malaria evolved even while the gene encoding the key antigen remained unchanged," said Victoria Barclay, the postdoctoral scholar in Read's lab who conducted the laboratory experiments and who is the corresponding author of the paper. "We did not detect any changes in the gene sequence." The researchers conclude that evolution must have taken place somewhere in the parasite's genome. Read's lab now is hunting for the exact locations on the parasite's DNA where the mutations occurred.

"Generalizing from animal models is notoriously difficult in malaria," Read said, so the scientists do not yet know if this newly recognized type of evolution could happen in human malaria or with other rapidly evolving diseases, such as the viruses that cause AIDS or cervical cancer. "What we do know is that in Victoria Barclay's experiments in our lab at Penn State; with our parasites, our mice, and with this particular antigen; the malaria parasites that evolved through vaccinated hosts become more virulent," he said.

"Vaccines are one of the most fantastically cost-effective health gains we've ever had, so there is no question that we should proceed on all fronts to develop a safe and effective vaccine against malaria," Read said. "At the same time, our research is revealing new reasons to proceed with vigilant caution." Read suggests that vaccine researchers conducting clinical trials should not only be carefully monitoring for parasite evolution at the vaccine target, but they also should watch for mutations throughout the parasite's entire genome. "This sort of monitoring also should go on once a new goes into widespread use," he said. "It appears that in a world with leaky vaccines, virulent pathogen strains can evolve. Different vaccines or other transmission-blocking measures might be needed to stop the spread of any evolved parasites," Read said.

Explore further: Multiple malaria vaccine offers protection to people most at risk

Related Stories

Multiple malaria vaccine offers protection to people most at risk

October 26, 2011
A new malaria vaccine could be the first to tackle different forms of the disease and help those most vulnerable to infection, a study suggests.

New candidate vaccine neutralizes all tested strains of malaria parasite

December 20, 2011
A new candidate malaria vaccine with the potential to neutralise all strains of the most deadly species of malaria parasite has been developed by a team led by scientists at the University of Oxford. The results of this new ...

Malaria parasites camouflage themselves from the immune defenses of expectant mothers

August 19, 2011
Collaborative research between Liverpool School of Tropical Medicine and the University of Copenhagen, published last week in the Proceedings of the National Academy of Sciences, have answered a long standing mystery, why ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.