Protective bacteria in the infant gut have resourceful way of helping babies break down breast milk

August 13, 2012 by Danielle Gutierrez

A research team at the University of California, Davis, has found that important and resourceful bacteria in the baby microbiome can ferret out nourishment from a previously unknown source, possibly helping at-risk infants break down components of breast milk.

Breast milk is amazingly intricate, providing all of the necessary to sustain and strengthen infants in the first months of life. Moreover, this of nutrition provides protection from infections, allergies and many other illnesses.

Breast milk also promotes the growth of protective bacteria in an infant's intestine. Because breast milk contains glycans (complex sugars) that infants cannot breakdown, it promotes the growth a specific type of bacteria, called bifidobacteria, that can process these glycans. While it is known that bifidobacteria avail themselves of the free glycans in breast milk, it was not known whether these bacteria could also obtain glycans that were linked to proteins. Such proteins are called glycoproteins, and they are abundant in breast milk.

The research team led by David A. Mills at the UC-Davis investigated the ability of bifidobacteria to remove glycans from milk glycoproteins. Their work was recently published in the journal Molecular & Cellular Proteomics.

Mills' group found that specific strains of bifidobacteria possessed enzymes capable of removing glycan groups from glycoproteins, enabling them to use these glycans as an additional food source. Surprisingly, one of the enzymes, EndoBI-1, was able to remove any type of N-linked glycan (glycans attached to proteins by the amino acid asparagine). This is unique among enzymes of this type and may provide a growth advantage for bifidobacteria in the infant because the glycoproteins in have complex glycans attached.

Mills explains that the ability of EndBI-1 to remove a variety of complex N-linked glycans combined with its unusual heat stability make "this potentially a very useful tool in both food processing and proteomics/pharmaceutical research."

The team's work suggests that bifidobacteria do not primarily feed on the glycans from milk glycoproteins. However, the study did show that under the proper conditions bidfidobacteria can grow when -linked glycans are the only energy source.

"One obvious goal of this research is to find ways to translate the benefits provided by milk and to at risk populations such as premature infants, malnourished children, among many others," Mills says.

Explore further: New method of bacterial cell engineering can produce better, cheaper drug therapies

More information: "Endo-β-N-acetylglucosaminidases from infant-gut associated bifidobacteria release complex N-glycans from human milk glycoproteins" by Daniel Garrido, Charles Nwosu, Santiago Ruiz-Moyano, Danielle Aldredge, J. Bruce German, Carlito B. Lebrilla and David A. Mills.

Related Stories

New method of bacterial cell engineering can produce better, cheaper drug therapies

March 26, 2012
(PhysOrg.com) -- Escherichia coli – a bacteria considered the food safety bane of restaurateurs, grocers and consumers – is a friend. Cornell University biomolecular engineers have learned to use E. coli to produce ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.