Researchers discover blood biomarker for Lou Gehrig's disease, could lead to new treatments

August 6, 2012, Brigham and Women's Hospital

Researchers from Brigham and Women's Hospital (BWH) are the first to discover that changes in monocytes (a type of white blood cell) are a biomarker for amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease. This finding also brings the medical community a step closer toward a new treatment for the debilitating neurological disease that affects approximately 30,000 Americans.

The study will be published online in The on August 6, 2012.

In pre-clinical studies involving mice with an ALS , the researchers saw that two months prior to ALS onset, monocytes in the spleen began exhibiting proinflammatory qualities. As disease onset loomed, there was an increase in cell-signaling molecules that directed monocytes to flood the spinal cord. Influx of these inflamed was associated with nerve cell death in the spinal cord.

When the researchers treated the mice with antibodies to modulate the inflammatory monocytes, they found that it led to fewer monocytes entering the spinal cord, diminished nerve cell loss and extended survival.

After having observed these activities in mice, the BWH researchers, working with the Massachusetts General Hospital (MGH) ALS Clinic and research team, found that there were similar monocytes in humans with ALS that also exhibited a disease-specific inflammatory signature.

"People have wondered if the immune system plays a role in like ALS," said Howard Weiner, MD, director of the BWH Multiple Sclerosis Program and senior study author. "The immune system is complicated, and previous immunotherapy trials have not been successful. But now we know what is wrong in the blood, and this opens up new therapeutic targets for ALS and perhaps other diseases in the near future."

Study co-author Merit Cudkowicz, MD, who heads the ALS program at MGH adds, "These findings identify a potential new for developing treatments for people with ALS."

Oleg Butovsky, PhD, BWH Department of Neurology is first study author and lead scientist on the study.

Each year, approximately 5,600 people in the United States are diagnosed with ALS, a disease that affects nerve and muscle functioning, eventually leading to paralysis. The average age at diagnosis is 55 years old and half of those affected live at least three or more years after being diagnosed. Twenty percent live five years or more, and up to 10 percent will live more than ten years.

Explore further: Potential new drug target in Lou Gehrig's disease

More information: Modulating inflammatory monocytes with a unique microRNA signature ameliorates murine ALS, Journal of Clinical Investigation.

Related Stories

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

How immune system, inflammation may play role in Lou Gehrig's disease

June 5, 2012
In an early study, UCLA researchers found that the immune cells of patients with amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, may play a role in damaging the neurons in the spinal cord. ALS is a disease of ...

Mild obesity appears to improve survival in ALS patients

May 11, 2011
Patients with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, may be an exception to the rule that being overweight is a health hazard. In a retrospective study of over 400 ALS patients, Massachusetts ...

Blocking metabolic protein improves movement in animals with amyotrophic lateral sclerosis

January 17, 2012
Turning off a protein that helps cells balance energy increases animal mobility and reduces the death of nerve cells that control movement in animal models of amyotrophic lateral sclerosis (ALS), according to a study in the ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.