New cancer therapy using ultra-violet C (UVC) pulse flash irradiation

August 22, 2012
New cancer therapy using ultra-violet C (UVC) pulse flash irradiation
MCF7: neoplastic cell, COS7:non-neoplastic cell. The Ultra Violet C (UVC) pulse flash irradiation only selectivity caused death of neoplastic cells, and not non-neoplastic cells. © Tokai University

Johbu Itoh at the Tokai University School of Medicine in Japan has developed a new and highly effective cancer therapy method where cancer cells are irradiated with ultraviolet C (UVC) light. The new method employs high intensity-UVC pulse flash rays (UVCPFR) of a broad UVC spectrum (230 to 280 nm) produced by a modified UV-flash sterilization system (BHX200). The experiments showed the pulsed nature of the spectrum to enhance the efficiency of destruction of neoplastic cells.

Importantly, the research demonstrates that under the appropriate UVC irradiation conditions, only neoplastic cell were destroyed, while non-neoplastic cells did not.

The well-known "germicidal light" of low pressure mercury lamps () is widely used for sterilizing medical instruments. However, it takes several hours for the weak light from UV lamps to have their germicidal effects.

In contrast, the sterilization effects of UV pulsed flash rays (wavelengths of 230-280nm and peak wavelength of 248 nm) show promise as a more efficient and rapid means of destroying a wider range of bacteria because this type of irradiation produces light whose energy is tens of thousands of times greater for a given area of irradiation, compared with conventional UV lamps (65W equivalency).

UVC pulse flash rays (UVCPFR), with 1-10 continuous flashes per second, can be produced by a powerful discharge of . Johbu Itoh and colleagues at the School of Medicine has developed and established UVCPFR therapy system for .

The researchers irradiated cells with pulsed light UVCPFR and caused functional disorder to produce cell injury and/or a functional obstruction only to neoplastic cells. Higher ultraviolet radiation sensitivity in the UVC range was observed in neoplastic cells compared to non-neoplastic cells. That is, a short burst of ultraviolet radiation was sufficient to selectively induce injury and death to neoplastic cells.

Furthermore, experiments showed UVCPFR to cause cell death within a few seconds. One of the major features of this method is that below a certain range of irradiation conditions, damage to intact or non-neoplastic cells can be largely ignored, and only neoplastic cells die. This method offers a simple means of reducing the burden on patients undergoing cancer therapy. Itoh and colleagues plan to adapt this system for cancer treatment using endoscopy, laser microscopy, and other such light irradiation equipment.

Explore further: UVC light kills wound bacteria

More information: www.acplan.jp/ichc2012/

Related Stories

UVC light kills wound bacteria

July 23, 2012
Ultraviolet (UVC) light can eradicate wound-infecting bacteria on mice increasing both survival and healing rates, according to a paper in the July 2012 issue of Antimicrobial Agents and Chemotherapy. The light did not damage ...

What happens when we sunburn: Researchers describe inflammatory mechanism for first time

July 8, 2012
The biological mechanism of sunburn – the reddish, painful, protective immune response from ultraviolet (UV) radiation – is a consequence of RNA damage to skin cells, report researchers at the University of California, ...

Light dynamics for cancer treatment

May 3, 2012
Research is delving into refinement of a revolutionary cancer treatment, photodynamic therapy (PDT). Using light, reactive oxygen and photosensitisers linked to specially designed antibodies, scientists are on the threshold ...

Study reveals harmful effects of compact fluorescent light bulbs to skin

July 19, 2012
(Medical Xpress) -- Inspired by a European study, a team of Stony Brook University researchers looked into the potential impact of healthy human skin tissue (in vitro) being exposed to ultraviolet rays emitted from compact ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.