Repairing cartilage with fat: Problems and potential solutions

August 24, 2012

Stem cells isolated from fat are being considered as an option for treating tissue damage and diseases because of their accessibility and lack of rejection. New research published in BioMed Central's open access journal Stem Cell Research & Therapy shows that this is not as straightforward as previously believed, and that fat-derived stem cells secrete VEGF and other factors, which can inhibit cartilage regeneration. However pre-treating the cells with antibodies against VEGF and growing them in nutrients specifically designed to promote chondrocytes can neutralize these effects.

Chondrocytes make and maintain healthy but damage and disease including osteoarthritis can destroy cartilage resulting in pain and lack of mobility. Stem cell therapy using cells isolated from adult tissue (such as fat) are being investigated as a way of repairing this damage. Stem cells have the ability to become many different types of tissue so the real trick is persuading them to become cartilage rather than bone, or blood vessels, for example.

Researchers from the Georgia Institute of Technology found that adipose (fat) stem cells (ASCs) secrete large amounts of factors, especially the growth factor VEGF, which prevent cartilage regeneration and actually causes the death (apoptosis) of chondrocytes along with the formation of blood vessels. Treating ASCs with medium designed to encourage their differentiation into cartilage cells was able to reduce the amount of these secreted factors and also prevented the growth of blood vessels. Specifically, an antibody designed to neutralize VEGF prevented chondrocyte apoptosis.

Prof Barbara Boyan, who led this research, explained, "Non-treated ASCs actually impeded healing of hyaline cartilage defects, and although treating ASCs improved the situation they added no benefit to compared to cartilage allowed to heal on its own. However we only looked at cartilage repair for a week after treatment, and other people have shown that two to six weeks is required before the positive effect of ASCs on influence cartilage regeneration is seen."

So while from fat may be able to help repair damaged cartilage, careful handling and pre-treatment may be required to ensure a positive result.

Explore further: Research team finds compound that can spur cartilage growth

Related Stories

Research team finds compound that can spur cartilage growth

April 6, 2012
(Medical Xpress) -- A research team from drug maker Novartis has discovered a compound that spurs cartilage growth in mice. As they describe in their paper published in the journal Science, the team has found that when a ...

Recommended for you

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.