Common antifungal drug decreases tumor growth and shows promise as cancer therapy

August 21, 2012
This image shows a frog tadpole with normal blood vessel development (fluorescing, top) and a frog tadpole with blood vessel development that was disrupted by the common antifungal medication, thiabendazole (bottom). New research published by Cha et. al. reveals that thiabendazole slows tumor growth and shows promise as a chemotherapy for cancer. Credit: Hye Ji Cha, The University of Texas at Austin

An inexpensive antifungal drug, thiabendazole, slows tumor growth and shows promise as a chemotherapy for cancer. Scientists in the College of Natural Sciences at The University of Texas at Austin made this discovery by exploiting the evolutionary relatedness of yeast, frogs, mice and humans.

Thiabendazole is an FDA-approved, taken orally that has been in clinical use for 40 years as an antifungal. It is not currently used for .

Hye Ji Cha, Edward Marcotte, John Wallingford and colleagues found that the drug destroys newly established blood vessels, making it a "vascular disrupting agent." Their research was published in the journal .

Inhibiting blood vessel, or vascular, growth can be an important chemotherapeutic tool because it starves tumors. Tumors induce new to feed their out-of-control growth.

In trials using mice, the researchers found that thiabendazole decreased in fibrosarcoma tumors by more than a half. Fibrosarcomas are cancers of the , and they are generally heavily vascularized with blood vessels.

The drug also slowed .

"This is very exciting to us, because in a way we stumbled into discovering the first human-approved vascular disrupting agent," said Marcotte, professor of chemistry. "Our research suggests that thiabendazole could probably be used clinically in combination with other chemotherapies."

The video will load shortly
Blood vessel development in tadpoles with and without the common antifungal drug thiabendazole shows how the drug is a "vascular disrupting agent." Credit: Hye Ji Cha, The University of Texas at Austin

The scientists' discovery is a culmination of research that crosses disciplines and organisms.

In a previous study, Marcotte and his colleagues found genes in single-celled that are shared with by virtue of their shared . In yeasts, which have no blood vessels, the genes are responsible for responding to various stresses to the cells. In vertebrates, the genes have been repurposed to regulate vein and artery growth, or angiogenesis.

"We reasoned that by analyzing this particular set of genes, we might be able to identify drugs that target the yeast pathway that also act as angiogenesis inhibitors suitable for chemotherapy," said Marcotte.

Turns out they were right.

Cha, a graduate student in cell and molecular biology at the university, searched for a molecule that would inhibit the action of those yeast genes. She found that thiabendazole did the trick.

She then tested the drug in developing frog embryos. These are fast growing vertebrates in which scientists can watch blood vessel growth in living animals.

Cha found that frog embryos grown in water with the drug either didn't grow blood vessels or grew blood vessels that were then dissolved away by the drug. Interestingly, when the drug was removed, the embryos' blood vessels grew back.

Cha then tested the drug on human blood vessel cells growing in Petri dishes, finding that the drug also inhibited their growth. Finally, she tested the drug on fibrosarcoma tumors in mice and found that it reduced blood vessel growth in the tumors as well as slowed the tumors' growth.

"We didn't set out to find a vascular disrupting agent, but that's where we ended up," said Wallingford, associate professor of developmental biology and Cha's graduate advisor with Marcotte. "This is an exciting example of the power of curiosity-driven research and the insights that can come from blending disciplines in biology."

The scientists' goal is now to move the drug into clinical trials with humans. They are talking with clinical oncologists about next steps.

"We hope the clinical trials will be easier because it is already approved by the FDA for human use," said Marcotte.

Explore further: Common transplant drug inhibits breast cancer growth, study shows

Related Stories

Common transplant drug inhibits breast cancer growth, study shows

May 26, 2011
Tacrolimus, a drug that is commonly used to prevent organ transplantation rejection, inhibits breast cancer growth in pre-clinical studies. The finding from UNC scientists was reported in the May 26th PLoS ONE.

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.