Fragile X and Down syndromes share signalling pathway for intellectual disability

August 3, 2012
Healthy dendritic spines on the surface of nerve cells are essential for intellectual ability Credit: Uta Mackensen, EMBO

Intellectual disability due to Fragile X and Down syndromes involves similar molecular pathways report researchers in The EMBO Journal. The two disorders share disturbances in the molecular events that regulate the way nerve cells develop dendritic spines, the small extensions found on the surface of nerve cells that are crucial for communication in the brain.

"We have shown for the first time that some of the proteins altered in Fragile X and Down syndromes are common molecular triggers of intellectual disability in both disorders," said Kyung-Tai Min, one of the lead authors of the study and a professor at Indiana University and the Ulsan National Institute of Science and Technology in Korea. "Specifically, two proteins interact with each other in a way that limits the formation of spines or protrusions on the surface of dendrites." He added: "These outgrowths of the cell are essential for the formation of new contacts with other and for the successful transmission of . When the spines are impaired, information transfer is impeded and mental retardation takes hold."

Intellectual disability is a developmental brain disorder that leads to impaired cognitive performance and mental retardation. Two of the most prevalent genetic causes of intellectual disability in humans are Fragile X and Down syndromes. Fragile X syndrome arises from a single that prevents the synthesis of a protein required for neural development (Fragile X mental retardation protein). The presence of all or a part of a third copy of in cells causes Down syndrome. Although both syndromes arise due to these fundamental genetic differences, the researchers identified a shared molecular pathway in mice that leads to intellectual disability for both disorders.

The mice that were used in the experiments are model systems for the study of and Down syndrome. Down syndrome mice have difficulties with memory and brain function, and the formation of the heart is often compromised, symptoms that are also observed in humans with Down syndrome. Both model systems are very useful to scientists looking to dissect the molecular events that occur as the disorders take hold.

The scientists revealed that the Down syndrome critical region 1 protein (DSCR1) interacts with Fragile X mental retardation protein (FMRP) to regulate dendritic spine formation and local protein synthesis. By using specific antibodies that bind to the proteins as well as fluorescent labeling techniques they showed that DSCR1 specifically interacts with the phosphorylated form of FMRP. The overlapping of intellectual disability in both genetic disorders suggest that a common therapeutic approach might be feasible for both syndromes.

Min remarked: "We believe these experiments provide an important step forward in understanding the multiple roles of DSCR1 in neurons and in identifying a molecular interaction that is closely linked to for both syndromes."

DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis.

Explore further: Most common form of inherited intellectual disability may be treatable

More information: Wei Wang, John Z. Zhu, Karen T. Chang, Kyung-Tai Min, doi:10.1038/emboj.2012.190

Related Stories

Most common form of inherited intellectual disability may be treatable

May 17, 2011
Advancements over the last 10 years in understanding intellectual disability (ID, formerly mental retardation), have led to the once-unimaginable possibility that ID may be treatable, a review of more than 100 studies on ...

Workings of brain protein suggest therapies for inherited intellectual disability, autism

July 21, 2011
Researchers now have a much clearer understanding of how mutations in a single gene can produce the complex cognitive deficits characteristic of Fragile X Syndrome, the most common inherited form of intellectual disability. ...

New clue found for Fragile X syndrome-epilepsy link

April 12, 2011
Individuals with fragile X syndrome, the most common inherited form of intellectual disability, often develop epilepsy, but so far the underlying causes are unknown. Researchers have now discovered a potential mechanism that ...

Recommended for you

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

Researchers find genes may 'snowball' obesity

December 7, 2017
There are nine genes that make you gain more weight if you already have a high body mass index, McMaster University researchers have found.

Gene therapy shows promise against blood-clotting disease

December 7, 2017
Gene therapy has freed 10 men from nearly all symptoms of hemophilia for a year so far, in a study that fuels hopes that a one-time treatment can give long-lasting help and perhaps even cure the blood disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.