100 gene deletions in mice identifies 9 new genes that determine bone strength

August 2, 2012

A genetic screening approach to studying bone disease has found nine new genes associated with bone health and suggests a new way to discover genes that may be implicated in human skeletal diseases. A collaborative study of the mineral content, strength and flexibility of bones has found clues to the cause of bone disorders such as osteoporosis, osteogenesis imperfecta, and high bone density syndromes. The study, which brings together specialist skills in mouse gene deletion and bone measurement to assess the strength of bones in 100 mutant mouse lines, is the largest reported screen of its type for genes that regulate bone health.

All nine of the new discovered had not previously been implicated in skeletal disorders and were discovered by randomly screening different strains of mice engineered such that a single gene had been inactivated in their genome.

such as osteoporosis represent a global healthcare burden but little is known about their genetic basis. Osteoporosis is the most common of skeletal disorders, affecting hundreds of millions of people worldwide at a cost of billions of pounds each year. Although it is known there is a strong to this disease, few of the genes that control bone structure and density are known.

"We are developing new ways of finding genes that are essential for normal development of the skeleton, and which maintain the structure and integrity of bone during adulthood. These genes will provide new understanding of the mechanisms responsible for bone diseases and may ultimately lead to the development of new treatments," explains Professor Graham Williams, senior author from Imperial College London. "We collaborated with outstanding colleagues at the Sanger Institute and several Universities. Our studies span many areas of expertise and we have developed a detailed and specific rapid-throughput system to screen bones from mice that lack a single gene. This strategy makes use of existing shared resources at Sanger and greatly reduces the number of mice required."

The team used an approach that looked at many different physical traits and identified a new classification system for bone mutants based on , strength, and the density and flexibility of bone. The bones from some mutants were found to be brittle, while others were flexible but weak.

The Sanger Institute Mouse Genetics Projects, the largest centre for genetically engineered mice, generated the mice strains used in the study. These strains of mice were first screened at the Sanger Institute before being sent on to the other collaborating Institutes for further analysis.

"The Mouse Genetics Project's broad primary trait screen independently identified five genes that when deleted cause bone abnormalities. The other groups used X-ray microradiography, micro-CT and biomechanical testing to further characterise these 5 genes and identified an additional 5 genes that affect bone composition" says Dr Jacqueline White, one of the authors from the Wellcome Sanger Institute. "Our study is an example of where approaching biology without any prior assumptions and looking broadly at the effects of inactivating a gene allows you to find new biological insights that wouldn't be possible in other, more focused studies."

Serendipitously, one of the random genes selected, Sparc, is a well-studied gene whose deletion results in weak, brittle bones. The screen positively identified this gene as affecting and this acted as a well-characterised positive control for the identification of the nine new genes that the study uncovered.

This study demonstrates that the loss of function of the each of these 10 genes can disrupt the structure and composition of bone. This disruption can be classified into three distinct, different categories: weak and flexible bone with low mineral content similar to postmenopausal osteoporosis, weak and brittle with low mineral content similar to osteogenesis imperfecta and high bone mass which is rare in humans.

"This genome-wide approach is extremely exciting and holds great promise for discovery of genetic susceptibilities and influences in in addition to providing potential targets for drug development" says Jim Lupski MD, PhD, DSc, a medical genomicist and the Cullen Professor and Vice Chair of Genetics at the Baylor College of medicine in Houston, Texas, USA. "As we learn more about common diseases that affect millions of individuals it is apparent that many such conditions can have genetically heterogeneous etiologies. The approach outlined by these investigators, although labour intensive, is a terrific example of the power of functional genomics."

"Human genetics studies require these model organisms to get a better understanding of disease and find plausible targets for treatments. This approach has allowed the teams to gain biological insights into the pathways in the body that may be potential therapeutic targets and, perhaps more importantly, help us to start to understand the biology behind structure."

The team are currently applying this same technique to study different disease traits in the eye and the brain. As these models are freely available to researchers worldwide from the Mouse Genetics Project, the hope is that other organisations will use these resources to continue the study of these gene deletions.

Explore further: A direct path for understanding and treating brittle bones

Related Stories

A direct path for understanding and treating brittle bones

May 22, 2011
A study by researchers at Children's Hospital Boston and collaborators at other institutions has provided new insights into the means by which bone cells produce new bone in response to mechanical stresses, such as exercise. ...

An important breakthrough at the IRCM associated with osteoporosis

October 4, 2011
Researchers at the Institut de recherches cliniques de Montréal (IRCM), directed by Dr. Jean Vacher, identified a new gene that modulates bone mass and that could become a risk factor for developing osteoporosis. This ...

Genes linked to osteoporosis, bone breaks

April 16, 2012
Researchers at The Institute for Aging Research at Hebrew SeniorLife, an affiliate of Harvard Medical School, have co-authored the largest meta-analysis of genome-wide association studies of osteoporosis as part of an international ...

Recommended for you

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.