Hormone in fruit flies sheds light on diabetes cure, weight-loss drug for humans

August 9, 2012

Manipulating a group of hormone-producing cells in the brain can control blood sugar levels in the body – a discovery that has dramatic potential for research into weight-loss drugs and diabetes treatment.

In a paper published in the October issue of Genetics and available online now, neurobiologists at Wake Forest University examine how fruit flies (Drosophila) react when confronted with a decreased diet.

Reduced diet or starvation normally leads to hyperactivity in fruit flies – a hungry fly buzzes around feverishly, looking for more food. That happens because an enzyme called AMP-activated kinase stimulates the secretion of the adipokinetic hormone, which is the functional equivalent of glucagon. This hormone acts opposite of insulin, as it tells the body to release the sugar, or food, needed to fuel that hyperactivity. The body uses up its energy stores until it finds food.

But when Wake Forest's Erik Johnson, an associate professor of biology, and his research team turned off AMP-activated kinase, the cells decreased sugar release and the hyperactive response stopped almost completely – even in the face of starvation.

"Since fruit flies and humans share 30 percent of the same genes and our brains are essentially wired the same way, it suggests that this discovery could inform metabolic research in general and diabetes research specifically," said Johnson, the study's principal investigator. "The basic biophysical, biochemical makeup is the same. The difference in complexity is in the number of cells. Why flies are so simple is that they have approximately 100,000 neurons versus the approximately 11 billion in humans."

Medical advances as a result of this research might include:

Diabetes research: Adipokinetic hormone is the insect equivalent to the hormone glucagon in the human pancreas. Glucagon raises ; insulin reduces them. However, it is difficult to study glucagon systems because the pancreatic cells are hard to pull apart. Studying how this similar system works in the fruit fly could pave the way to a drug that targets the that cause glucagon to tell the body to release sugar into the blood – thus reducing the need for insulin shots in diabetics.

Weight-loss drugs: An "exercise drug" would turn on all AMP-activated kinase in the body and trick the body into thinking it was exercising. "Exercise stimulates AMP-activated kinase, so manipulation of this molecule may lead to getting the benefits of exercise without exercising," Johnson said. In previous research published in the online journal PLoS ONE, Johnson and his colleagues found that, when you turn off AMP-activated kinase, you get that "eat a lot more than normal flies, move around a lot less, and end up fatter."

Explore further: New inflammation hormone link may pave way to study new drugs for Type 2 diabetes

More information: www.genetics.org/content/early … 143610.full.pdf+html

Related Stories

New inflammation hormone link may pave way to study new drugs for Type 2 diabetes

May 15, 2012
A new link between obesity and type 2 diabetes found in mice could open the door to exploring new potential drug treatments for diabetes, University of Michigan Health System research has found.

Researchers discover protein that may represent new target for treating type 1 diabetes

January 4, 2012
Researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine and colleagues have discovered a new protein that may play a critical role in how the human body regulates blood sugar levels. Reporting ...

Recommended for you

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

A new approach to high insulin levels

September 18, 2017
Diabetes is characterised by a deficiency of insulin. Its opposite is a condition called congenital hyperinsulinism—patients produce the hormone too frequently and in excessive quantities, even if they haven't eaten any ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.