Using millions of years of cell evolution in the fight against cancer

August 7, 2012

As the medical community continues to make positive strides in personalized cancer therapy, scientists know some dead ends are unavoidable. Drugs that target specific genes in cancerous cells are effective, but not all proteins are targetable. In fact, it has been estimated that as few as 10 to 15 percent of human proteins are potentially targetable by drugs. For this reason, Georgia Tech researchers are focusing on ways to fight cancer by attacking defective genes before they are able to make proteins.

Professor John McDonald is studying micro RNAs (miRNAs), a class of small RNAs that interact with messenger RNAs (mRNAs) that have been linked to a number of diseases, including cancer. McDonald's lab placed two different miRNAs (MiR-7 and MiR-128) into and watched how they affected the gene system. The findings are published in the current edition of the journal BMC Medical Genomics.

"Each inserted miRNA created hundreds of thousands of gene expression changes, but only about 20 percent of them were caused by direct interactions with mRNAs," said McDonald. "The majority of the changes were indirect – they occurred downstream and were consequences of the initial reactions."

McDonald initially wondered if those secondary interactions could be a setback for the potential use of miRNAs, because most of them changed the gene expressions of something other than the intended targets. However, McDonald noticed that most of what changed downstream was functionally coordinated.

miR-7 transfection most significantly affected the pathways involved with cell adhesion, epithelial-mesenchymal transitions (EMT) and other processes linked with cancer metastasis. The pathways most often affected by miR-128 transfection were different. They were more related to cell cycle control and processes involved with cellular replication – another process that is overactive in cancer cells.

"miRNAs have evolved for millions of years in order to coordinately regulate hundreds to thousands of genes together on the cellular level," said McDonald. "If we can understand which miRNAs affect which suites of genes and their coordinated functions, it could allow clinicians to attack cancer cells on a systems level, rather than going after genes individually."

Clinical trials for miRNAs are just beginning to be explored, but definitive findings are likely still years away because there are hundreds of miRNAs whose cellular functions must be fully understood. Another challenge facing scientists is developing ways to effectively target therapeutic miRNAs to cancer cells, something McDonald and his Georgia Tech peers are also investigating.

Explore further: Researchers identify key role of microRNAs in melanoma metastasis

Related Stories

Researchers identify key role of microRNAs in melanoma metastasis

July 11, 2011
Researchers at the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, identified for the first time the key role specific microRNAs (miRNAs) play in melanoma metastasis to simultaneously ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet Aug 07, 2012
Can anyone tell me if plant microRNA is capable of altering intracellular signaling and stochastic gene expression that could result in formation of a new chemical receptor in the cell membrane? Typically, I would not even speculate about that, since I have no expertise, but another article seems to suggest it in the context of chemical ecology. See: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA http://dx.doi.org...2011.158

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.