Modification of tumor suppressor affects sensitivity to potential GBM treatment

August 13, 2012

Despite years of research, glioblastoma, the most common and deadly brain cancer in adults, continues to outsmart treatments targeted to inhibit tumor growth.

and have long understood that a called the or EGFR is altered in at least 50 percent of patients with glioblastoma. Yet patients with glioblastoma either have upfront or quickly develop resistance to inhibitors aimed at stopping the protein's function, suggesting that there is another signalling pathway at play.

Researchers from the Ludwig Institute for , the University of California, San Diego (UCSD) and Los Angeles (UCLA) and the University of São Paulo, Brazil published their findings on a mechanism that defines these types of resistance in the August 13 online issue of Proceedings of the National Academy of Sciences.

Previous research suggested that PTEN, a tumor suppressor gene, may be turned off in some cancer patients, disabling its function and potentially causing the resistance to EGFR inhibitors. "We asked ourselves, how is PTEN being modified? What is altering its function?," said Frank Furnari, PhD, corresponding author and Ludwig senior investigator based at UCSD.

The researchers focused on one type of modification called phosphorylation, the process by which some proteins are turned on and off. They mapped the sites where PTEN was changed or phosphorylated and subsequently developed an antibody that would recognize the PTEN protein when it was phosphorylated.

The team then put the antibody to the test. Together with Suely Marie, MD, at the University of São Paulo, they first evaluated a large series of clinical samples from patients with glioblastoma and found that the presence of phosphorylation was associated with shortened survival. Then with Paul Mischel, MD, at UCLA, they examined samples from a completely different series of patients who were EGFR positive and did not respond to EGFR-inhibitor treatment. The results confirmed that patients with modified PTEN had resistance to EGFR inhibitors.

"We think this modification of PTEN may become a useful marker to determine if a patient will respond or not to a growth factor receptor inhibitor," added Furnari. "If you can prevent phosphorylation, our studies showed that you have created a scenario where EGFR inhibitors will work better."

The team identified two enzymes responsible for turning off the brakes of PTEN – the fibroblast growth receptor and SRC family kinases. By understanding how these enzymes disable the suppressor function of the gene, scientists may be able to target different molecules that can intervene to stop resistance.

"The more we understand, the better we can conceive of ways to restore PTEN function in tumor cells and stop resistance to EGFR inhibitors in patients with glioblastoma," said lead author, Tim Fenton, PhD, who conducted this research while at the Ludwig Institute at UCSD and is currently at the University College London Cancer Institute.

According to Paul Mischel, who has since moved from UCLA to become a Ludwig member based at UCSD, "The study outcomes provide a potentially clinically targetable . The findings enable us to move forward to identify and develop small molecule inhibitors for eventual use in combination with inhibitors for the treatment of glioblastoma and other cancers."

Explore further: The right combination: Overcoming drug resistance in cancer

Related Stories

The right combination: Overcoming drug resistance in cancer

June 1, 2012
Overactive epidermal growth factor receptor (EGFR) signaling has been linked to the development of cancer. Several drug therapies have been developed to treat these EGFR-associated cancers; however, many patients have developed ...

Targeting cholesterol to fight deadly brain cancers

September 15, 2011
Blocking the uptake of large amounts of cholesterol into brain cancer cells could provide a new strategy to battle glioblastoma, one of the most deadly malignancies, researchers at UCLA's Jonsson Comprehensive Cancer Center ...

How brain tumors invade

December 12, 2011
Scientists have pinpointed a protein that allows brains tumors to invade healthy brain tissue, according to work published this week in the Journal of Experimental Medicine.

Recommended for you

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.