Molecular and protein markers discovered for liver transplant failure from hepatitis C

August 16, 2012

Researchers have discovered molecular and protein signatures that predict rapid onset of liver damage in hepatitis C patients following a liver transplant. The markers appeared soon after transplant and well before clinical evidence of liver damage.

Such early detection of susceptibility to virus-induced could lead to more personalized monitoring and treatment options after a transplant. Also, because the markers stem from an underlying pathology occurring at a very basic level, they might reveal why hepatitis C is so clinically variable, and suggest new therapies to protect patients' own livers.

The findings were the cover story of the journal Hepatology. The molecular and protein markers were found in separate studies, one led by Dr. Angela "Angie" Rasmussen, and the other by Dr. Deborah Diamond, both working in the lab of Dr. Michael Katze, professor of microbiology at the University of Washington. The Katze lab employs systems approaches to studying many , including hepatitis C, HIV, influenza, SARS and Ebola.

from infection is the leading reasons for organ worldwide, Rasmussen noted. In almost all cases, the newly transplanted organ quickly becomes infected, because the hepatitis C virus persists in the patient's bloodstream. Virus damage to the transplanted organ is sometimes slow, taking years or decades to progress.

However, in about a third of the cases, she said, leathery, fibrous tissue builds up in the transplanted liver within one to two years. This condition, called cirrhosis, can keep the liver from clearing toxins from the body and can end in liver .

Physicians have had no means of sorting out which of their patients might be prone to this complication. They have been awaiting prognostic markers for disease progression and therapy response to allow them to tailor treatment to the individual patient.

Rasmussen said that, at present, liver patients regularly have invasive core-needle biopsies to check their transplanted liver. Strong antiviral drugs are available to try to offset hepatitis C , she explained, but these are not always effective and usually have harsh side effects. Surgeons have been hoping for a test that could indicate if a patient was likely to do well with less aggressive treatment. This knowledge might spare the patient from unnecessary repeat biopsies and the most potent antiviral regimens, which impose severe, flu-like discomfort, chronic fatigue, depression and anemia.

She added that the discovery of the protein and molecular markers of hepatitis-induced liver injuries was an important first step, but not yet a solution. More research would have to be conducted for evidence of the markers' usefulness in clinical decision making before a practical lab test for patient could be designed.

The two research teams led by Rasmussen and Diamond took different, highly sophisticated approaches to find prognostic markers. The Diamond group performed global protein analyses of liver biopsies taken at 6 months and a year after transplantation. State-of-the art mass spectrometry methods and computational modeling directed them to 250 proteins, out of 4,324 originally uncovered, whose regulation was markedly different in patients with rapidly progressing fibrosis. These patients showed an enrichment of regulatory proteins associated with various immune, liver-protective, and fibrosis-generating processes. The researchers also observed an increase in proinflammatory activity and impairment in antioxidant defenses.

This particular protein-abundance and protein-activity profile occurred in patients who developed severe liver injury. The findings, Diamond and her team noted in their paper, might prove useful in prognosis if they lead to applications for predicting early onset liver fibrosis.

Rasmussen's team faced the challenge that no single clinical variable, or combination of clinical variables, could accurately warn that a liver transplant patient was heading for trouble. They decided to look at all of the RNA molecules produced in cells from 111 liver biopsy specimens collected over time from 57 hepatitis C infected patients who had undergone surgery. Such a set of molecules is called a transcriptome, a collection of works "written" from the DNA code in response to a viral infection. Her team applied leading-edge mathematical modeling systems to cull patterns of gene expression.

"We were able to identify a molecular signature of gene expression for those patients at risk of developing severe fibrosis in their transplanted livers," Rasmussen said. Significantly, her team also discovered that these alterations in gene expression occur before there is evidence in the liver tissue of disease progression.

"That suggested to us that events that occur during the early stages when the transplanted liver is becoming infected with the patient's hepatitis C virus influence the course of the disease," Rasmussen said. Her team also observed a precursor state – a set of conditions that foretold problems ahead – that was common for different, severe clinical outcomes. Her team went on to describe the probable cellular network that could be the basis for the initial transition to severe liver disease.

They hope the findings open new avenues in research to delay disease progression and extend the survival of transplanted livers. Both the Rasmussen and the Diamond teams employed systems biology methods to understand the root of post-transplant liver disease recurrence. This approach looks at the complex interactions between pathogens, in this case the , and the organism they infect. These interactions are largely studied in their entirety at the scale of the genetic, protein and cellular alterations that occur.

There study results are a first for systems biology research: they revealed molecular markers associated with disease outcome, not simply markers of . The researchers' groundbreaking scientific approach to the effects of viral infection, as well as their findings, were praised in an accompanying editorial in Hepatology.

Explore further: Noninvasive liver tests may predict hepatitis C patient survival

Related Stories

Noninvasive liver tests may predict hepatitis C patient survival

June 14, 2011
Non-invasive tests for liver fibrosis, such as liver stiffness measurement or the FibroTest, can predict survival of patients with chronic hepatitis C, according to a new study in Gastroenterology, the official journal of ...

Pinpointing a tell-tale mark of liver cancer

July 8, 2011
Persistent hepatitis C virus (HCV) infection can lead to chronic hepatitis C and then progress to fatal liver diseases including liver cirrhosis and liver cancer, the third most common cause of cancer-related deaths. Worldwide, ...

New compounds show promise against hepatitis C infection

April 12, 2011
Two bioflavonoids, catechin and naringenin, have displayed antiviral activity on tissue culture infected with Hepatitis C.

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.