Neural interface for prosthesis can restore function in motor control brain areas

August 20, 2012, IOS Press

Amputation disrupts not only the peripheral nervous system but also central structures of the brain. While the brain is able to adapt and compensate for injury in certain conditions, in amputees the traumatic event prevents adaptive cortical changes. A group of scientists reports adaptive plastic changes in an amputee's brain following implantation of multielectrode arrays inside peripheral nerves. Their results are available in the current issue of Restorative Neurology and Neuroscience.

"We found that a neurally-interfaced hand prosthesis re-established communication between the central and peripheral nervous systems, not only restructuring the areas directly responsible for motor control but also their functional balance within the bi-hemispheric system necessary for motor control," says lead investigator Camillo Porcaro, PhD, of the Institute of Neuroscience, Newcastle University, Medical School, Newcastle upon Tyne, UK and the Institute of Cognitive Sciences and Technologies (ISTC) – National Research Council (CNR).

A 26-year old male with a left arm was implanted with four microelectrode arrays in the ulnar and median nerves of his stump for four weeks. Prior to implantation, he was trained for two weeks by video to perform three specific movements with his phantom hand. During the experimental period, he underwent intensive training to control a hand prosthesis using the implanted microelectrodes to perform the same hand grip tasks. Together with visual feedback from the prosthesis, the patient received sensory feedback from an experimenter, who delivered electrical pulses to the nerves activated by each movement. EEG signals were recorded as the patient moved his right hand and the prosthesis.

The patient's right hand movement showed clear activation of the primary sensory and motor areas for right hand movement, on the left side of the brain. Prior to implantation, commands to move the phantom left hand triggered the primary sensory and motor areas on the left side of the brain, and the pre-motor and supplementary motor cortices on both sides of the brain. No primary motor cortex movement was found on the right side of the brain, as would be expected.

After the four weeks of prosthesis motor control training with implanted microelectrodes, cerebral activation changed markedly. Cortical recruitment became almost symmetrical with right hand movements. The presence of intra-fascicular electrodes allowed new signals to be delivered through towards the cortex and produced an intensive exchange of sensori-motor afferent and efferent inputs and outputs. Four weeks of training led to a new functional recruitment of sensorimotor areas devoted to hand control.

"Taken together, the results of this study confirm that neural interfaces are optimal candidates for hand prosthesis control," says Dr. Porcaro. "They establish communication channels needed for natural control of the prosthesis. Furthermore, neural interfaces recreate the connection with the environment that promotes restorative neuroplasticity. Bi-hemispheric networks regain the physiological communication necessary for motor control."

Explore further: A helping hand for prosthetics

More information: “A neurally -interfaced hand prosthesis tuned inter-hemispheric communication,” by G. DiPino, C. Porcaro, M. Tombini, G. Assenza, G. Pellegrino, F. Tecchio, P.M. Rossini. Restorative Neurology and Neuroscience, 30:5 (September 2012). DOI: 10.3233/RNN-2012-120224.

Related Stories

A helping hand for prosthetics

April 11, 2012
An EU-funded project has developed an artificial hand that will revolutionise the lives of amputees. The so-called Smarthand has all the basic functions of its real counterpart including sensitivity and motor control.

Electrocorticographic signals may restore arm movement

March 30, 2012
(HealthDay) -- Electrocorticography (ECoG) signals from patients with chronic motor dysfunction represent motor information that may be useful for controlling prosthetic arms, according to a study published in the March issue ...

Researchers aim for 'direct brain control' of prosthetic arms (w/ Video)

July 27, 2011
Engineering researchers at four U.S. universities are embarking on a four-year project to design a prosthetic arm that amputees can control directly with their brains and that will allow them to feel what they touch. While ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.