Low oxygen levels may decrease life-saving protein in spinal muscular atrophy

August 21, 2012

Investigators at Nationwide Children's Hospital may have discovered a biological explanation for why low levels of oxygen advance spinal muscular atrophy (SMA) symptoms and why breathing treatments help SMA patients live longer. The findings appear in Human Molecular Genetics.

SMA is a progressive neurodegenerative disease that causes muscle damage and weakness leading to death. Respiratory support is one of the most common treatment options for severe SMA patients since respiratory deficiencies increase as the disease progresses. Clinicians have found that successful can allow patients with severe SMA to live longer. However, the biological relationship between SMA symptoms and low isn't clear.

To better understand this relationship, investigators at Nationwide Children's Hospital examined gene expression within a of severe SMA. "We questioned whether low levels of oxygen linked to biological stress is a component of SMA disease progression and whether these low oxygen levels could influence how the SMN2 gene is spliced," says Dawn Chandler, PhD, principal investigator in the Center for and at The Research Institute at Nationwide Children's Hospital.

SMA is caused by mutation or deletion of the SMN1 gene that leads to reduced levels of the survival motor neuron protein. Although a duplicate SMN gene exists in humans, SMN2, it only produces low levels of functional protein. This is caused by a splicing error in SMN2 in which exon 7 is predominantly skipped, lowering the amount of template used for protein construction.

Mouse models of severe SMA have shown changes in how genes are differentially spliced and expressed as the disease progresses, especially near end-stages. "One gene that undergoes extreme alteration is Hif3alpha," says Dr. Chandler. "This is a stress gene that responds to changes in available oxygen in the cellular environment, specifically to decreases in oxygen. This gave us a clue that low levels of oxygen might influence how the SMN2 gene is spliced."

Upon examining mouse models of severe SMA exposed to low oxygen levels, Dr. Chandler's team found that SMN2 exon 7 skipping increased within skeletal muscles. When the mice were treated with higher oxygen levels, exon 7 was included more often and the mice showed signs of improved motor function.

"These data correspond with the improvements seen in SMA patients who undergo oxygen treatment," says Dr. Chandler. "Our findings suggest that respiratory assistance is beneficial in part because it helps prevent periods of low oxygenation that would otherwise increase SMN2 exon 7 skipping and reduce SMN levels."

Dr. Chandler says daytime indicators that reveal when an SMA patient is experiencing low oxygen levels during sleep may serve as a measure to include SMA patients in earlier respiratory support and therefore improve quality of life or survival.

Explore further: Pregnancy hormone has unprecedented, powerful effect on spinal muscular atrophy

More information: Bebee TW, Dominguez CE, Samadzadeh-Tarighat S, Akehurst KL, Chandler DS. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet. 2012 Jul 20. [Epub ahead of print]

Related Stories

Pregnancy hormone has unprecedented, powerful effect on spinal muscular atrophy

July 25, 2011
Researchers in Ottawa report new hope for the treatment of infants born with serious genetic disorder.

Long-term correction of severe spinal muscular atrophy by antisense therapy

October 5, 2011
A new study from Cold Spring Harbor Laboratory (CSHL) reports surprising results that suggest that the devastating neuromuscular disease, spinal muscular atrophy (SMA), might not exclusively affect the motor neurons in the ...

Recommended for you

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

A new approach to high insulin levels

September 18, 2017
Diabetes is characterised by a deficiency of insulin. Its opposite is a condition called congenital hyperinsulinism—patients produce the hormone too frequently and in excessive quantities, even if they haven't eaten any ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.