Oxygen radicals defend the intestine against gastroenteritis

August 21, 2012
Oxygen radicals defend the intestine against gastroenteritis

(Medical Xpress) -- The findings of new research from UCD Conway Institute and the National Children’s Research Centre shows oxygen radicals are the first line of defence against gastroenteritis caused by Campylobacter organisms.

Oxygen free radicals, also known as reactive oxygen species (ROS), are well known to be important in killing bacteria that have been engulfed by phagocytes. However, what triggers their action and how they impact on pathogens on mucosal surfaces such as the intestine has been unclear until now.

For the first time, Conway Fellows, Professors Ulla Knaus and Billy Bourke demonstrate that ROS interfere with the signalling process needed to produce the protective capsule around Campylobacter bacteria. Without this capsule, the bacteria are less capable of causing and sustaining infection.

“This study shows that the presence of Campylobacter on the surface lining of the intestine triggers the release of ROS by epithelial NADPH oxidise (Nox/Duox) enzymes. What is really exciting about our results is that the released ROS don't directly kill the pathogens, rather they disable fundamental bacterial processes necessary for pathogenicity”, says Professor Ulla Knaus, UCD School of Medicine Professor of Immunobiology and co-author of the article published in Cell Host & Microbe.

“Now that we have evidence that Nox/Duox enzymes activated by Campylobacter in the epithelial barrier are a first line defence against intestinal infection, the next obvious question we want to address is whether this defence mechanism is also active against other causes of such as E. coli and Salmonella.”

Co-author, Professor Billy Bourke who is a consultant paediatric gastroenterologist in the National Children’s Research Centre & Our Lady’s Children’s Hospital, Crumlin and associate professor of paediatrics in UCD School of Medicine explains, “Infectious diarrhoea is one of the major killers of children worldwide, accounting for more than 20% of all deaths of children under the age of 5 years. Campylobacter infection in particular is the predominant pathogen seen in children.

So, while these experiments provide a novel insight into how the intestine responds to infection, as a clinician I am excited about the possibility of advancing this work so that ultimately we can treat or protect children against infection.”

This research, primarily funded by the National Children's Research Centre and Science Foundation Ireland, raises the possibility of manipulating or interfering with bacterial virulence by altering the redox or oxygenation status of the gut. Additionally, as the bacterial tyrosine kinases shown to be involved in the signalling process disrupted by ROS are different to their host counterparts, they might prove useful new antibiotic targets in the future.

Explore further: Beneficial bacteria help repair intestinal injury by inducing reactive oxygen species

More information: Corcionivoschi et al (2012) Mucosal Reactive Oxygen Species Decrease Virulence by Disrupting Campylobacter jejuni Phosphotyrosine Signaling. Cell Host & Microbe 12, 47–59, July 19, 2012 dx.doi.org/10.1016/j.chom.2012.05.018

Related Stories

Beneficial bacteria help repair intestinal injury by inducing reactive oxygen species

May 10, 2011
(Medical Xpress) -- The gut may need bacteria to provide a little bit of oxidative stress to stay healthy, new research suggests. Probiotic bacteria promote healing of the intestinal lining in mice by inducing the production ...

MRSA tailors virulence mechanisms to the hospital setting

April 25, 2012
(Medical Xpress) -- In the hospital environment where antibiotic usage is extremely high, it seems that healthcare associated methicillin resistant Staphylococcus aureus (MRSA) has cleverly adapted for survival.

Scientists identify critical cell in fighting E. coli infection

July 15, 2012
Despite ongoing public health efforts, E. coli outbreaks continue to infiltrate the food supply, annually causing significant sickness and death throughout the world. But the research community is gaining ground. In a major ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.