Designing better prostheses through gait analysis

August 20, 2012 By Sarah Perrin
Studying gait for designing better prostheses
© 2012 EPFL

Our ability to put one foot in front of the other is the result of a subtle coordination between the brain and the spinal cord. Understanding this mechanism was the goal of Life Science student Steve Berger’s Master’s thesis. He hopes to help create prostheses that are better adapted to the needs of handicapped individuals.

We take it for granted, but walking on two feet is an extremely complex task. Reproducing a bipedal gait in a robot or simulating it on a computer is much more complex and involves many more parameters than one would imagine. That’s why humanoid robots or computer avatars often seem stiff and awkward.

Fascinated by neurosciences, recent life Sciences graduate Steve Berger wanted to contribute to research in this field. He was intrigued by this problem, a combination of biology and technology, and made it the subject of his Master’s thesis work. During a first-year class, he was intrigued by an article about Carnegie Mellon professor Hartmut Geyer’s research on muscle simulation. Berger immediately decided to do his research in this area.

“I reproduced one of his projects that consisted of moving a 2D computer character,” he explains. First, he had to put in place all of the character’s (which he named Regis) basic parameters, such as the number of muscles and tendons involved and their length and viscoelastic properties, as well as the intensity of basic reflexes that enabled a rudimentary two-footed gait. Then he adapted and corrected them during the course of experimentation. “In particular, I introduced the idea of energy consumption; Regis was able to optimize his efforts in order to be able to walk for longer periods of time.”

The video will load shortly

In a third phase, the young scientist is developing a model for allowing the humanoid to get over an obstacle placed on the ground. “I got the idea from a study on cats,” Berger explains. “I realized that in order for Regis to fall as little as possible, his muscles needed to be activated in a certain order, with each one exerting the right amount of 'force'.”

Subtle coordination

By doing this research, Berger is hoping to better understand the mechanism of coordinated movement, and to contribute, in the longer term, to the creation of devices and prostheses that would allow handicapped individuals not only to walk again, but also to be able to navigate difficult and uneven ground. “To do that, it’s critical to pinpoint the logic in the biology in order to build robotics that are really robust, functional and adaptable.”

Walking is a very complex function, the result of a subtle between the and the . As in any biological system, using simulations is very helpful in understanding the phenomenon. “It allows you to simplify the function by separating out or isolating its components, to make various hypotheses and then test them, and finally to validate them by implementing them in a robot.”

The young scientist is continuing his academic career with a PhD. He’ll continue working on bipedal gait, but now his focus will be on its cognitive aspects, particularly consciousness and the image one has of oneself during the action of walking. Berger himself admits he doesn’t walk the same as he did before he started studying walking; “Now, from time to time, I walk on my hands.”

Explore further: Scientists develop algorithm to understand certain human diseases

Related Stories

Of life and limb

January 5, 2012

When someone loses a limb to war, accident, or disease, she can get an artificial limb that restores some of her lost movement. But even the best prosthesis doesn’t restore the sense of touch. And touch is what lets ...

Recommended for you

Success in the 3-D bioprinting of cartilage

April 28, 2017

A team of researchers at Sahlgrenska Academy has managed to generate cartilage tissue by printing stem cells using a 3-D-bioprinter. The fact that the stem cells survived being printed in this manner is a success in itself. ...

Mouse teeth providing new insights into tissue regeneration

April 27, 2017

Researchers hope to one day use stem cells to heal burns, patch damaged heart tissue, even grow kidneys and other transplantable organs from scratch. This dream edges closer to reality every year, but one of the enduring ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.