Research identifies a protein group that may kick-start allergic reactions

August 2, 2012
What sets allergies in motion?

(Medical Xpress) -- Allergies, or hypersensitivities of the immune system, are more common than ever before. According to the Asthma and Allergies Foundation of America, one in five Americans suffers from an allergy — from milder forms like hay fever to more severe instances, like peanut allergies which can lead to anaphylactic shock.

While medications like antihistamines can treat the symptoms of an allergic reaction, the treatment is too limited, says Prof. Ronit Sagi-Eisenberg, a cell biologist at Tel Aviv University's Sackler Faculty of Medicine. Cells release dozens of molecules during an allergic reaction, and available medications address only a small subset. Now she and her fellow researchers are working to identify what triggers allergic reactions in the body, with the goal of stopping an allergic reaction before it starts.

The answer may lie within the Rab family, a group of 60 proteins that are known to regulate the distribution of proteins throughout the body. Along with her Ph.D. student Nurit Pereg-Azouz, Prof. Sagi-Eisenberg found that 30 of these proteins determined how cells react to an allergen, and two of these have been identified for further research as instruments of preventative medication. When the chain of events leading up to an allergic reaction can be understood, drugs can be developed to inhibit the initial reaction, explains Prof. Sagi-Eisenberg.

This research has been published in The Journal of Immunology.

Getting to the root

Allergic reactions can appear as rashes, respiratory difficulties, or swelling, but they're all caused by the same mechanism. When exposed to an allergen, the body activates the . But , located throughout the body, sense that the immune system has mistakenly been activated against something that is not bacterial or viral, and they release biologically active molecules to create an inflammatory response.

So what causes mast cells to react? Prof. Sagi-Eisenberg and her team work to identify the exact chain of events in an allergic reaction. They looked to the Rab family of proteins as a potential source for answers, screening for the proteins' involvement in initiating allergic reaction.

"We genetically manipulated mast cells so that they contained mutated versions of these proteins, which were already active without an allergen," explains Prof. Sagi-Eisenberg. If a was relevant, it would cause an allergic reaction. "This new methodology allowed us to screen for the functional impact of each member of this family, determining if they either inhibited or activated the allergic process."

In the end, the researchers flagged 30 proteins that were relevant to the process of creating an allergic reaction in the body, and have identified two that appear to be the most involved. Further research will use these two proteins as tools to gain more understanding of .

Targeted drugs could prevent allergic reaction

An allergic reaction is not only a function of two proteins interacting — it's the result of a chain of events. By identifying crucial links in such a chain, researchers can create targeted drugs that break the chain. New medications that target tumor cells, for example, are directed at halting the tumor's ability to function and grow, starving it of crucial blood and oxygen supplies. Prof. Sagi-Eisenberg envisions similar medications for allergies, with medications that address the source of the allergic reaction instead of the symptoms.

The need for such medications is pressing. Steroids, the only available type of drug that effectively prevents mast cells from secreting biologically active agents, also cause harm to kidneys, bones, and the immune system. Patients may suffer more from the treatment than they do from the itself. Alternative medications that are as effective as steroids but will be devoid of their adverse side effects are desperately needed. Prof. Sagi-Eisenberg's work will help to identify proteins that can be targeted by medications without impacting the function of other cells, she hopes.

Explore further: Researchers engineer new way to inhibit allergic reactions without side effects

Related Stories

Researchers engineer new way to inhibit allergic reactions without side effects

October 7, 2011
(Medical Xpress) -- Researchers from the University of Notre Dame have announced a breakthrough approach to allergy treatment that inhibits food allergies, drug allergies and asthmatic reactions without suppressing a sufferer’s ...

Peanut allergy turned off by tricking immune system

October 11, 2011
Researchers have turned off a life-threatening allergic response to peanuts by tricking the immune system into thinking the nut proteins aren't a threat to the body, according to a new preclinical study from Northwestern ...

UF researcher reduces allergens in peanuts using pulsed light

June 9, 2011
A University of Florida researcher has developed a new technique to make peanuts safer for people with peanut allergies.

Recommended for you

The skinny on lipid immunology

October 20, 2017
Phospholipids - fat molecules that form the membranes found around cells - make up almost half of the dry weight of cells, but when it comes to autoimmune diseases, their role has largely been overlooked. Recent research ...

Bacterial pathogens outwit host immune defences via stealth mechanisms

October 20, 2017
Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Researchers release the brakes on the immune system

October 18, 2017
Many tumors possess mechanisms to avoid destruction by the immune system. For instance, they misuse the natural "brakes" in the immune defense mechanism that normally prevent an excessive immune response. Researchers at the ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.