Protein found to regulate red blood cell size and number

August 28, 2012 by Nicole Giese Rura

The adult human circulatory system contains between 20 and 30 trillion red blood cells (RBCs), the precise size and number of which can vary from person to person. Some people may have fewer, but larger RBCs, while others may have a larger number of smaller RBCs. Although these differences in size and number may seem inconsequential, they raise an important question: Just what controls these characteristics of RBCs?

This question is particularly relevant for the roughly one-quarter of the population that suffers from , which is often caused by flawed RBC production. A better understanding of how RBC production is controlled may offer greater insight into the development and potential treatment of anemia.

By analyzing the results of genome-wide association studies (GWAS) in conjunction with experiments on mouse and , researchers in the lab of Whitehead Institute Founding Member Harvey Lodish have identified the protein cyclin D3 as regulating the number of cell divisions RBC progenitors undergo, which ultimately affects the resulting size and quantity of RBCs. Their findings are reported in the September 14 issue of .

"This is one of the rare cases where we can explain a normal human-to-human variation," says Lodish, who is also a professor of biology and at MIT. "In a sense, it's a window on . Why this should have happened, we have no idea, but it does."

Lodish likens cyclin D3's role in RBCs to that of a clock. In some people, the clock triggers RBC progenitors to mature after four rounds of cell division, resulting in fewer but larger RBCs. In others it goes off after five cell division cycles, which leads to production of a greater number of smaller RBCs. In both cases, the blood usually has the same ability to carry oxygen to distant tissues.

The initial hint of cyclin D3's importance came from GWAS, genetic surveys of large numbers of people with or without a particular trait. Researchers compare the groups in an attempt to identify genetic variations.

"The problem with most GWAS is that you get a bunch of potentially interesting genes, but that doesn't tell you anything about the functional biology, so you really have to figure it out," says Leif Ludwig, a Lodish graduate student and co-author of the Genes and Development paper. "You only know something has a role, but you don't know how it can cause variation. This work on cyclin D3 is a really nice example of how functional follow-up on a GWAS association can really teach us something about underlying biology."

In the case of RBC size and number, a mutation affecting cyclin D3 production bubbled to the surface from the GWAS's murky genetic data. Ludwig and co-author Vijay Sankaran then confirmed that reduced or inhibited cyclin D3 expression in mice and in human RBC caused those cells to halt and mature earlier, producing larger and fewer than mice and cells with uninhibited cyclin D3 production.

As one of only a handful of studies that have successfully used GWAS to produce definitive biological results, Sankaran is excited that this work confirms the value of such genetic studies.

"Can genetics teach us about biology?" asks Sankaran, also a postdoctoral researcher in the Lodish lab. "Yes! This work tells us that as genetic studies identify new genes, there will probably have been a lot of things biologists may have ignored. Genetics allows you to shine a spotlight on something interesting and then home in on it see what can be learned."

Explore further: Keeping up with demand for red blood cells

More information: "Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number" Genes and Development, 2012.

Related Stories

Keeping up with demand for red blood cells

July 16, 2012
(Medical Xpress) -- Two cellular proteins team up to provide a steady supply of red blood cells (RBCs), according to a study by Lizhao Wu, PhD, of the University of Medicine and Dentistry of New Jersey-New Jersey Medical ...

Recommended for you

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (1) Aug 28, 2012
"This is one of the rare cases where we can explain a normal human-to-human variation," says Lodish, who is also a professor of biology and bioengineering at MIT. "In a sense, it's a window on human evolution. Why this should have happened, we have no idea, but it does."

Does it happen differently in males than in females? If so, does cyclin D3 coordinate the cell cycle during differentiation or is it the effect of gonadotropin releasing hormone (GnRH) on sexual differentiation that's responsible for sex differences in RBC counts that vary predictably with age in human males and females -- as does the diet responsive hypothalamic neurogenic niche that controls GnRH pulse frequency and amplitude during sexual differentiation of the brain and body?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.