Rewired visual input to sound-processing part of the brain leads to compromised hearing

August 22, 2012, Georgia State University

Scientists at Georgia State University have found that the ability to hear is lessened when, as a result of injury, a region of the brain responsible for processing sounds receives both visual and auditory inputs.

Yu-Ting Mao, a former graduate student under Sarah L. Pallas, professor of neuroscience, explored how the brain's ability to change, or neuroplasticity, affected the brain's ability to process sounds when both visual and auditory information is sent to the auditory .

The study was published in the Journal of .

The auditory thalamus is the region of the brain responsible for carrying sound information to the , where sound is processed in detail.

When a person or animal loses input from one of the senses, such as hearing, the region of the brain that processes that information does not become inactive, but instead gets rewired with input from other .

In the case of this study, early resulted in visual inputs into the auditory thalamus, which altered how the auditory cortex processes sounds.

The cortical "map" for discriminating different sound frequencies was significantly disrupted, she explained.

"One of the possible reasons the sound frequency map is so disrupted is that visual responsive neurons are sprinkled here and there, and we also have a lot of single neurons that respond to both light and sound," Pallas said. "So those strange neurons sprinkled there probably keeps the map from forming properly."

Mao also discovered reduced sensitivity and slower responses of neurons in the auditory cortex to sound.

Finally, the neurons in the auditory cortex were less sharply tuned to different frequencies of sound.

"Generally, individual will be pretty sensitive to one sound frequency that we call their 'best frequency,'" Pallas said. "We found that they would respond to a broader range of frequencies after the rewiring with visual inputs."

While Pallas' research seeks to create a basic understanding of brain development, knowledge gained from her lab's studies may help to give persons who are deaf, blind, or have suffered brain injuries ways to keep visual and auditory functions from being compromised.

"Usually we think of plasticity as a good thing, but in this case, it's a bad thing," she said. "We would like to limit the plasticity so that we can keep the function that's supposed to be there."

Explore further: Unraveling the mysteries of the maternal brain: Odors influence the response to sounds

More information: The study is "Compromise of Auditory Cortical Tuning and Topography after Cross-Modal Invasion by Visual Inputs," Mao, Y. and Pallas, S. L., Journal of Neuroscience, 32(30):10338-10351.

Related Stories

Unraveling the mysteries of the maternal brain: Odors influence the response to sounds

October 19, 2011
Motherhood is associated with the acquisition of a host of new behaviors that must be driven, at least in part, by alterations in brain function. Now, new research published by Cell Press in the October 20 issue of the journal ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.