Scientists discover previously unknown cleaning system in brain

August 15, 2012, University of Rochester Medical Center

A previously unrecognized system that drains waste from the brain at a rapid clip has been discovered by neuroscientists at the University of Rochester Medical Center. The findings were published online August 15 in Science Translational Medicine.

The highly organized system acts like a series of pipes that piggyback on the 's blood vessels, sort of a shadow plumbing system that seems to serve much the same function in the brain as the lymph system does in the rest of the body – to drain away waste products.

"Waste clearance is of central importance to every organ, and there have been long-standing questions about how the brain gets rid of its waste," said Maiken Nedergaard, M.D., D.M.Sc., senior author of the paper and co-director of the University's Center for Translational Neuromedicine. "This work shows that the brain is cleansing itself in a more organized way and on a much larger scale than has been realized previously.

"We're hopeful that these findings have implications for many conditions that involve the brain, such as traumatic brain injury, Alzheimer's disease, stroke, and Parkinson's disease," she added.

The Role of the Glymphatic System in Cleansing the Brain. First author Jeffrey Iliff, Ph.D., discusses the glymphatic system and its possible relevance to Alzheimer’s disease. Credit: University of Rochester Medical Center

Nedergaard's team has dubbed the new system "the glymphatic system," since it acts much like the lymphatic system but is managed by brain cells known as glial cells. The team made the findings in mice, whose brains are remarkably similar to the human brain.

Scientists have known that cerebrospinal fluid or CSF plays an important role cleansing , carrying away waste products and carrying nutrients to brain tissue through a process known as diffusion. The newly discovered system circulates CSF to every corner of the brain much more efficiently, through what scientists call bulk flow or convection.

"It's as if the brain has two garbage haulers – a slow one that we've known about, and a fast one that we've just met," said Nedergaard. "Given the high rate of metabolism in the brain, and its exquisite sensitivity, it's not surprising that its mechanisms to rid itself of waste are more specialized and extensive than previously realized."

While the previously discovered system works more like a trickle, percolating CSF through brain tissue, the new system is under pressure, pushing large volumes of CSF through the brain each day to carry waste away more forcefully.

The glymphatic system is like a layer of piping that surrounds the brain's existing . The team found that glial cells called astrocytes use projections known as "end feet" to form a network of conduits around the outsides of arteries and veins inside the brain – similar to the way a canopy of tree branches along a well-wooded street might create a sort of channel above the roadway.

Those end feet are filled with structures known as water channels or aquaporins, which move CSF through the brain. The team found that CSF is pumped into the brain along the channels that surround arteries, then washes through brain tissue before collecting in channels around veins and draining from the brain.

How has this system eluded the notice of scientists up to now?

The scientists say the system operates only when it's intact and operating in the living brain, making it very difficult to study for earlier scientists who could not directly visualize CSF flow in a live animal, and often had to study sections of brain tissue that had already died. To study the living, whole brain, the team used a technology known as two-photon microscopy, which allows scientists to look at the flow of blood, CSF and other substances in the brain of a living animal.

While a few scientists two or three decades ago hypothesized that CSF flow in the brain is more extensive than has been realized, they were unable to prove it because the technology to look at the system in a living animal did not exist at that time.

"It's a hydraulic system," said Nedergaard. "Once you open it, you break the connections, and it cannot be studied. We are lucky enough to have technology now that allows us to study the system intact, to see it in operation."

First author Jeffrey Iliff, Ph.D., a research assistant professor in the Nedergaard lab, took an in-depth look at amyloid beta, the protein that accumulates in the brain of patients with Alzheimer's disease. He found that more than half the amyloid removed from the brain of a mouse under normal conditions is removed via the glymphatic system.

"Understanding how the brain copes with waste is critical. In every organ, waste clearance is as basic an issue as how nutrients are delivered. In the brain, it's an especially interesting subject, because in essentially all neurodegenerative diseases, including Alzheimer's disease, protein waste accumulates and eventually suffocates and kills the neuronal network of the brain," said Iliff.

"If the glymphatic system fails to cleanse the brain as it is meant to, either as a consequence of normal aging, or in response to brain injury, waste may begin to accumulate in the brain. This may be what is happening with amyloid deposits in Alzheimer's disease," said Iliff. "Perhaps increasing the activity of the glymphatic system might help prevent amyloid deposition from building up or could offer a new way to clean out buildups of the material in established Alzheimer's disease," he added.

Explore further: Advances in research into Alzheimer's disease

Related Stories

Advances in research into Alzheimer's disease

July 9, 2011
Advances in research into Alzheimer's disease: transporter proteins at the blood CSF barrier and vitamin D may help prevent amyloid β build up in the brain

Pathophysiology may help ID rare, early form of Alzheimer's

July 12, 2012
(HealthDay) -- In dominantly inherited Alzheimer's disease, clinical and biomarker changes occur decades before the expected onset of disease symptoms, according to a study published online July 11 in the New England Journal ...

Researchers find a new culprit in Alzheimer's disease: Too many blood vessels

August 31, 2011
University of British Columbia scientists may have uncovered a new explanation for how Alzheimer's disease destroys the brain – a profusion of blood vessels.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeddy_Mctedder
2.3 / 5 (6) Aug 15, 2012
THIS IS AMAZING. it is amazing that we are still making fundamental anatomical discoveries about the brain. truly this shows how little we still know. really amazing.
and7barton
not rated yet Aug 16, 2012
Jeddy - How you you KNOW how little we know ? - All this article demonstrates is that we didn't know THIS.
By its very nature, what we don't know, we don't know.
Shabs42
5 / 5 (1) Aug 16, 2012
Jeddy - How you you KNOW how little we know ? - All this article demonstrates is that we didn't know THIS.
By its very nature, what we don't know, we don't know.


I'm assuming you were being at least a little sarcastic, but obviously we can't measure what we don't know; but I think we're pretty safe in saying that it's approximately a whole hell of a lot. If we were even close to knowing it all there wouldn't be much use to this website, or science in general.
HenisDov
1 / 5 (4) Aug 23, 2012
Unearthed Subject
How Brain Cleans Itself

A.
http://www.articl...ell-us-8
17144.html
Now we can appreciate the fractal nature of life's evolution. It is ever-continuous ever-enhanced ever-complexed cooperation. Now we can understand why, and grosso modo how, all the organs and processes and signals found in multicelled organisms have their origins in the monocells communities. And this includes the functions of serotonin and melatonin and, yes, the evolution of neural cells and the neural systems with their intricate outer-membrane shapes and functionings and with their high energy consumption requirements.

B.
http://www.immuni...comments
Melatonin Origin And Function
Dov Henis (2009-02-03)

Dov Henis (comments from 22nd century)
http://universe-life.com/

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.