Sequencing of malaria genomes reveals challenges, opportunities in battle against parasite

August 5, 2012

Genetic variability revealed in malaria genomes newly sequenced by two multi-national research teams points to new challenges in efforts to eradicate the parasite, but also offers a clearer and more detailed picture of its genetic composition, providing an initial roadmap in the development of pharmaceuticals and vaccines to combat malaria.

The research appears in two studies published in the latest issue of the journal Nature Genetics. They focus on Plasmodium vivax (P. vivax), a species of malaria that afflicts humans and the most prevalent human malaria parasite outside Africa, and Plasmodium cynomolgi (P. cynomolgi), a close relative that infects Asian Old World monkeys.

"The bad news is there is significantly more in P. vivax than we'd thought, which could make it quite adept at evading whatever arsenal of drugs and vaccines we throw at it," said Professor Jane Carlton, senior author on both studies and part of New York University's Center for Genomics and . "However, now that we have a better understanding of the challenges we face, we can move forward with a deeper analysis of its genomic variation in pursuing more effective remedies."

In one study, the researchers examined P. vivax strains from different geographic locations in , South America, and Asia, providing the researchers with the first -wide perspective of global variability within this species. Their analysis showed that P. vivax has twice as much as the world-wide Plasmodium falciparum (P. falciparum) strains, revealing an unexpected ability to evolve and, therefore, presenting new challenges in the search for treatments.

The second study, performed jointly with Professor Kazuyuki Tanabe at Osaka University, Japan, sequenced three genomes of P. cynomolgi. The researchers compared its genetic make-up to P. vivax and to Plasmodium knowlesi (P. knowlesi), a previously sequenced malaria parasite that affects both monkeys and humans in parts of Southeast Asia.

Their work marked the first time P. cynomolgi genomes have been sequenced, allowing researchers to identify genetic diversity in this parasite. Its similarity to P. vivax means that their results will also benefit future efforts to understand and fight against forms of malaria that afflict humans.

"We have generated a genetic map of P. cynomolgi, the sister species to P. vivax, so we can now push forward in creating a robust model system to study P. vivax," explained Tanabe. "This is important because we can't grow P. vivax in the lab, and researchers desperately need a model system to circumvent this."

Explore further: Monkeys provide reservoir for human malaria in South-east Asia

More information: DOI: 10.1038/ng.2373 , DOI: 10.1038/ng.2375

Related Stories

Monkeys provide reservoir for human malaria in South-east Asia

April 7, 2011
Monkeys infected with an emerging malaria strain are providing a reservoir for human disease in South-east Asia, according to research published today. The Wellcome Trust-funded study confirms that the species has not yet ...

Cell surface mutation protects against common type of malaria

December 1, 2011
A mutation on the surface of human red blood cells provides protection against malaria caused by the parasite Plasmodium vivax, research led by Case Western Reserve University School of Medicine shows.

Combination drug treatment can cut malaria by 30 percent

April 2, 2012
Malaria infections among infants can be cut by up to 30 per cent when antimalarial drugs are given intermittently over a 12 month period, a three-year clinical trial in Papua New Guinea has shown.

Recommended for you

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.