Continuous spinal cord stimulation improves heart function

August 27, 2012

Spinal cord stimulation improves heart function and could become a novel treatment option for heart failure, according to research presented at the ESC Congress 2012 today, August 25, by Professor Hung-Fat Tse from Hong Kong.

Heart failure is a progressive weakening of the . It is a that occurs when the heart cannot pump blood to meet the body's needs. When heart failure is present, not enough blood is circulating, which may cause fatigue. Further, fluid accumulation in the abdomen and legs and congestion in the lungs is common, and occurs when blood backs up waiting to enter the heart, causing fluid to leak into the surrounding tissue.

Spinal cord stimulators are implanted neurostimulation devices that are similar in function and appearance to . Spinal cord stimulation (SCS) therapy uses an implanted device and thin wires with electrodes to deliver low levels of electrical energy to the spinal cord.

In this study, thoracic neurostimulation was used to determine if there was an improvement in the contractile (or pumping) function of the heart compared with medical therapy alone in the treatment of heart failure.

Prior experimental studies have shown that the addition of intermittent thoracic SCS near the upper chest (at the level of thoracic vertebrae numbers T1-T2) improved left ventricular contractile function in animal models of ischemic heart failure.

The present experimental study compared the previously tested intermittent approach to a new continuous approach for SCS delivery. Pigs with ischemic heart failure were randomized into 3 groups: medical therapy only, intermittent SCS (four hours, three times a day) with medical therapy, or continuous SCS (24 hour) with medical therapy. Medical therapy included and beta-blockers, medications which have been approved for use in heart failure and shown to reduce mortality.

After ten weeks, echocardiograms showed similar and significant increases in left ventricular ejection fraction and increased ventricular contractile function in both groups of animals treated with intermittent or continuous SCS as compared with control group. "The ejection fraction is a measurement of how well the heart is pumping and represents the proportion of blood squeezed out of the heart with every beat," said Professor Tse, who is professor of cardiology in the Cardiology Division at Queen Mary Hospital, University of Hong Kong. "It is commonly used as a marker of prognosis, with a lower ejection fraction generally indicating a poorer prognosis. Our results indicate that both intermittent and continuous SCS improve ."

Continuous SCS was associated with significant reduction of serum norepinephrine and brain natriuretic peptide compared with alone. Professor Tse said: "Serum norepinephrine and brain natriuretic peptide are biomarkers that indicate the severity of heart failure. Our early findings suggest that continuous SCS may produce additional benefits over intermittent SCS."

"Improving the heart's pumping function is an important aspect of treating heart failure, and early research from this and other studies suggests that spinal cord stimulation could play an important role in aiding the heart's contractions," said Professor Tse. "Our research suggests that spinal cord stimulation could provide an alternative treatment option for treating . Further research is needed to determine what approach would be most beneficial."

Explore further: Hospital survival differs among Hispanic and non-Hispanic heart failure patients

Related Stories

Hospital survival differs among Hispanic and non-Hispanic heart failure patients

March 13, 2012
The odds of surviving their hospital stay for heart failure differ between Hispanic and non-Hispanic white patients according to their level of heart function, even when they received equal care in hospitals participating ...

Heart separation device improves 3 year outcomes in heart failure patients

August 27, 2012
A novel non-invasive device which separates healthy and damaged heart muscle and restores ventricle function improves 3 year outcomes in patients with ischemic heart failure, according to research presented at the ESC Congress ...

Recommended for you

Could aggressive blood pressure treatments lead to kidney damage?

July 18, 2017
Aggressive combination treatments for high blood pressure that are intended to protect the kidneys may actually be damaging the organs, new research from the University of Virginia School of Medicine suggests.

Quantifying effectiveness of treatment for irregular heartbeat

July 17, 2017
In a small proof-of-concept study, researchers at Johns Hopkins report a complex mathematical method to measure electrical communications within the heart can successfully predict the effectiveness of catheter ablation, the ...

Concerns over side effects of statins stopping stroke survivors taking medication

July 17, 2017
Negative media coverage of the side effects associated with taking statins, and patients' own experiences of taking the drugs, are among the reasons cited by stroke survivors and their carers for stopping taking potentially ...

Study discovers anticoagulant drugs are being prescribed against safety advice

July 17, 2017
A study by researchers at the University of Birmingham has shown that GPs are prescribing anticoagulants to patients with an irregular heartbeat against official safety advice.

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Heart study finds faulty link between biomarkers and clinical outcomes

July 14, 2017
Surrogate endpoints (biomarkers), which are routinely used in clinical research to test new drugs, should not be trusted as the ultimate measure to approve new health interventions in cardiovascular medicine, according to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.