Novel technique demonstrates interactions between malaria parasite and HIV

August 15, 2012
Here, scientist Guadalupe Andreani prepares cells for culture. Credit: Journal of Visualized Experiments

The World Health Organization estimates that in 2011 there were 216 million cases of malaria and 34.2 million people living with HIV. These diseases particularly afflict sub-Saharan Africa, where large incidence of co-infection result in high mortality rates. Yet, in spite of this global pandemic, interactions between the parasite that causes malaria, Plasmodium falciparum, and HIV-1 are poorly understood. However, a new video article in JoVE, the Journal of Visualized Experiments, that describes a novel technique to study the interactions between HIV-1 and P. falciparum in cultured human cells, will allow scientists to explore different parameters of co-infection by the two microbes.

The study is led by Dr. David Richard of the Centre Hospitalier Universitaire de Quebec (CHUQ). Dr. Richard explains, "We don't know much about what is happening at the cellular level when HIV-1-infected immune cells encounter the . Results obtained from the few studies exploring the interaction of these two diseases are sometimes conflicting. We hope that our model will allow us to thoroughly dissect these interactions in a simplified system."

Each disease attacks a different component of human blood, thus disturbing normal immune function. P. falciparum infect red blood cells and cause fever, shivering, vomiting, or convulsions in patients. HIV-1 causes acquired immune deficiency syndrome (AIDS) by infecting components of the immune system, including macrophages and helper T cells, and then replicates and destroys the host cells. By studying co-infection at different phases of each disease in vitro, scientists can better understand how different stages of and HIV reproduction affect the onset and severity of the other disease. As such, Dr. Richard and his laboratory present a technique that investigates how P. falciparum-infected affect the replication of HIV-1 in monocyte-derived macrophages.

Dr. Richard points out that, "by publishing in JoVE, you really see what is happening in the experiment. The visual representation helps succinctly explain a long procedure, and gives you a fuller picture of the schematic complexity." He hopes that this publication will give the scientific community the tools to look at the interactions on a cellular level, which would be an initial step in improving the quality of life for individuals infected by these deadly diseases. "This protocol provides a tool to examine the interactions between P. falciparium and HIV," states JoVE editor Dr. Charlotte Frank Sage, "Publication of the protocol in JoVE will allow researchers around the world to see a detailed demonstration of this system which will help in bring the technology to their laboratories."

Explore further: Improving human immunity to malaria

More information: Richard et. al.: www.jove.com/video/4166/an-vit … ium-falciparum-hiv-1

Related Stories

Improving human immunity to malaria

August 1, 2012
The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells.

Researchers discuss challenges to developing broadly protective HIV vaccines

September 7, 2011
The human body can produce powerful antibodies that shield cells in the laboratory against infection by an array of HIV strains. In people, however, recent research shows that these broadly neutralizing antibodies are not ...

New HIV-inhibiting protein identified

May 29, 2012
Scientists have identified a new HIV-suppressing protein in the blood of people infected with the virus. In laboratory studies, the protein, called CXCL4 or PF-4, binds to HIV such that it cannot attach to or enter a human ...

Recommended for you

Finish your antibiotics course? Maybe not, experts say

July 27, 2017
British disease experts on Thursday suggested doing away with the "incorrect" advice to always finish a course of antibiotics, saying the approach was fuelling the spread of drug resistance.

Co-infection with two common gut pathogens worsens malnutrition in mice

July 27, 2017
Two gut pathogens commonly found in malnourished children combine to worsen malnutrition and impair growth in laboratory mice, according to new research published in PLOS Pathogens.

Phase 3 trial confirms superiority of tocilizumab to steroids for giant cell arteritis

July 26, 2017
A phase 3 clinical trial has confirmed that regular treatment with tocilizumab, an inhibitor of interleukin-6, successfully reduced both symptoms of and the need for high-dose steroid treatment for giant cell arteritis, the ...

A large-scale 'germ trap' solution for hospitals

July 26, 2017
When an infectious airborne illness strikes, some hospitals use negative pressure rooms to isolate and treat patients. These rooms use ventilation controls to keep germ-filled air contained rather than letting it circulate ...

Researchers report new system to study chronic hepatitis B

July 25, 2017
Scientists from Princeton University's Department of Molecular Biology have successfully tested a cell-culture system that will allow researchers to perform laboratory-based studies of long-term hepatitis B virus (HBV) infections. ...

Male hepatitis B patients suffer worse liver ailments, regardless of lifestyle

July 25, 2017
Why men with hepatitis B remain more than twice as likely to develop severe liver disease than women remains a mystery, even after a study led by a recent Drexel University graduate took lifestyle choices and environments ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.