Ten new diabetes gene links offer picture of biology underlying disease

August 12, 2012, Oxford University

(Medical Xpress) -- Ten more DNA regions linked to type 2 diabetes have been discovered by an international team of researchers, bringing the total to over 60.

The study provides a fuller picture of the genetics and biological processes underlying type 2 , with some clear patterns emerging.

The international team, led by researchers from the University of Oxford, the Broad Institute of Harvard and MIT, and the University of Michigan, Ann Arbor, used a new to probe deeper into the genetic variations that commonly occur in our DNA and which may have some connection to type 2 diabetes.

Their findings are published in the journal Nature Genetics.

'The ten gene regions we have shown to be associated with type 2 diabetes are taking us nearer a biological understanding of the disease,' says principal investigator Professor Mark McCarthy of the Wellcome Trust Centre for at the University of Oxford. 'It is hard to come up with for diabetes without first having an understanding of which biological processes in the body to target. This work is taking us closer to that goal.'

Approximately 2.9 million people are affected by diabetes in the UK, and there are thought to be perhaps a further 850,000 people with undiagnosed diabetes. Left untreated, diabetes can cause many different health problems including , stroke, and blindness. Even a mildly raised glucose level can have damaging effects in the long-term.

Type 2 diabetes is by far the most common form of the disease. In the UK, about 90% of all adults with diabetes have type 2 diabetes. It occurs when the body does not produce enough insulin to control the level of glucose in the blood, and when the body no longer reacts effectively to the insulin that is produced.

The researchers analysed DNA from almost 35,000 people with type 2 diabetes and approximately 115,000 people without, identifying 10 new gene regions where could be reliably linked to risk of the disease. Two of these showed different effects in men and women, one linked to greater diabetes risk in men and the other in women.

With over 60 genes and gene regions now linked to type 2 diabetes, the researchers were able to find patterns in the types of genes implicated in the disease. Although each individual gene variant has only a small influence on people's overall risk of diabetes, the types of genes involved are giving new insight into the biology behind diabetes.

Professor Mark McCarthy says: 'By looking at all 60 or so together we can look for signatures of the type of genes that influence the risk of type 2 diabetes.

'We see genes involved in controlling the process of cell growth, division and ageing, particularly those that are active in the pancreas where insulin is produced. We see genes involved in pathways through which the body's fat cells can influence elsewhere in the body. And we see a set of transcription factor genes – genes that help control what other genes are active.'

While gene association studies have been successful in finding DNA regions that can be reliably linked to type 2 diabetes, it can be hard to tie down which gene and what exact DNA change is responsible.

Professor McCarthy and colleagues' next step is to get complete information about genetic changes driving type 2 diabetes by sequencing people's DNA in full.

He is currently leading a study from Oxford University that, with collaborators in the US and Europe, has sequenced the entire genomes of 1400 people with diabetes and 1400 people without. First results will be available next year.

'Now we have the ability to do a complete job, capturing all linked to ,' says Professor McCarthy, a Wellcome Trust Senior Investigator. 'Not only will we be able to look for signals we've so far missed, but we will also be able to pinpoint which individual DNA change is responsible. These genome sequencing studies will really help us push forward towards a more complete biological understanding of diabetes.'

Explore further: 'Jack Spratt' diabetes gene identified

More information: 'Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes', Nature Genetics. DOI: 10.1038/ng.2383

Related Stories

'Jack Spratt' diabetes gene identified

June 1, 2012
Type 2 diabetes is popularly associated with obesity and a sedentary lifestyle. However, just as there are obese people without type 2 diabetes, there are lean people with the disease.

Large meta-analysis finds new genes for type 1 diabetes

September 29, 2011
The largest-ever analysis of genetic data related to type 1 diabetes has uncovered new genes associated with the common metabolic disease, which affects 200 million people worldwide. The findings add to knowledge of gene ...

Could a drug reverse Type 2 diabetes?

September 23, 2011
Australian researchers have isolated a ‘master gene’ that controls Type 2 diabetes and say drugs that prevent or reverse the condition by switching off the gene may be as little as five years away

Researchers discover 'master switch' gene for obesity, diabetes

May 15, 2011
A team of researchers, led by King's College London and the University of Oxford, have found that a gene linked to type 2 diabetes and cholesterol levels is in fact a 'master regulator' gene, which controls the behaviour ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.