Bonanza of genomic sequence data gives researchers valuable new insights into a poorly understood cancer

September 12, 2012, Agency for Science, Technology and Research (A*STAR), Singapore
Gastric cancer: Tracking a mysterious killer
The human stomach — cancer in this organ has a low profile but a high death rate. Credit: iStockphoto.com/IngramPublishing

Stomach cancer doesn't get the same publicity as lung or breast cancer, but it is a health threat to be taken very seriously. "Gastric cancer is the second leading cause of worldwide cancer mortality, with an annual death rate of over 700,000 individuals," explains Patrick Tan of the A*STAR Genome Institute of Singapore. He notes that this disease is especially prevalent in Asia; gastric cancer is the fifth most common cancer amongst Singaporean men.

Remarkably little is known about the biological triggers of gastric tumor formation. Tan recently led a large international team of researchers that identified for this particular cancer. They performed a massive dragnet screen for mutations, sequencing 18,000 genes in 15 different tumors and comparing them against equivalent sequences from adjacent, noncancerous tissue.

The results proved illuminating. For example, although half of all gastric cancer cases are associated with infection by the , there were no obvious differences in mutational profiles from H. pylori-positive and -negative tumors. However, Tan notes that this may also be a result of limited sample size. In general, the researchers encountered striking diversity across their samples, but also uncovered patterns upon closer examination. "Although most individual genes were only mutated in a small proportion of samples—usually less than 10%—many of the genetic abnormalities represented different components of the same functional pathway," says Tan.

Many mutations observed by the team affect cellular adhesion pathways, which can influence tumor progression and metastasis. One gene in this pathway, FAT4, caught the researchers' attention; laboratory experiments confirmed that disruption of this gene confers tumorigenic properties on cells. Tan and co-workers subsequently identified FAT4 mutations in genomic data from various other cancers as well. They also identified another previously unknown tumor suppressor gene, ARID1A; importantly, this gene acts in a cancer-associated signaling pathway targeted by existing drugs, suggesting that it may provide a clinically useful indicator for planning patient treatment.

In their ongoing analysis of the gastric cancer genomic landscape, Tan and his co-workers will now investigate major structural alterations—including chunks of chromosome that have been duplicated, deleted or flipped around—as well as changes in how chromosomal DNA becomes chemically modified. Collectively, these data may eventually provide a handy atlas for oncologists. "We hope to apply these technologies to patients treated in clinical trials, to identify accurate molecular predictors of disease relapse and treatment response," says Tan.

Explore further: Experts identify critical genes mutated in stomach cancer

More information: Zang, Z. J., Cutcutache, I., Poon, S. L., Zhang, S. L., McPherson, J. R., et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nature Genetics 44, 570–574 (2012). www.nature.com/ng/journal/v44/n5/abs/ng.2246.html

Related Stories

Experts identify critical genes mutated in stomach cancer

April 8, 2012
An international team of scientists, led by researchers from the Duke-NUS Graduate Medical School (Duke-NUS) in Singapore and National Cancer Centre of Singapore, has identified hundreds of novel genes that are mutated in ...

Genetic differences distinguish stomach cancers, treatment response

August 1, 2011
Stomach cancer is actually two distinct disease variations based on its genetic makeup, and each responds differently to chemotherapy, according to an international team of scientists led by researchers at Duke-National University ...

Stomach bacterium damages human DNA

September 6, 2011
The stomach bacterium Helicobacter pylori is one of the biggest risk factors for the development of gastric cancer, the third most common cause of cancer-related deaths in the world. Molecular biologists from the University ...

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.