New genetic clues to why most bone marrow transplant patients develop graft-versus-host disease

September 4, 2012

A team of scientists led by a bone marrow transplant researcher at Fred Hutchinson Cancer Research Center has shed new light on why most bone marrow transplant patients who receive tissue-matched cells from unrelated donors still suffer acute graft-versus-host disease (GVHD). The answer appears to lie in the discovery of previously undetected genetic differences in the DNA of patients and unrelated marrow donors.

The laboratory-based study findings by Effie Petersdorf, M.D., and colleagues soon will be translated to the clinic when a Hutchinson Center transplant protocol – the first of its kind –opens at Seattle Cancer Care Alliance later this year to test patients and donors for these genetic differences. The goal is to further refine the tissue-matching process to reduce the incidence of GVHD, which affects about 80 percent of patients and has been a longtime, vexing challenge for transplant doctors.

GVHD occurs when the donor immune system (the graft) begins to circulate in the patient's bloodstream and recognizes the host's (the patient's) tissue as foreign. When this happens, the new immune system attacks the recipient's tissues such as the liver, gastrointestinal system and skin.

and are used to treat a variety of malignant blood diseases such as leukemia. Hematopoietic cell transplantation was pioneered at the Hutchinson Center in the 1970s and continues to be a major focus of research and clinical trials to improve survival and reduce side effects.

Published recently in Science Translational Medicine, the study details how researchers identified two specific single-nucleotide polymorphisms, also called SNPs (pronounced "snips"), within the major histocompatibility complex (MHC) in human DNA that are markers for either or disease-free survival. These markers are distinct from the human leukocyte antigens (HLA), found on the same chromosome as the MHC, that are traditionally used to match recipients and donors, a process called tissue typing.

Researchers found that if a patient and donor have different SNPs, the patient was at increased risk of GVHD or a lower chance of disease-free survival. The scientists surmised that genes located near these SNPs must be involved in that process.

"The question I wanted to ask with this study is whether there could be genes we don't know about that are located close to the major histocompatibility complex that could be influencing GVHD risk," said Petersdorf, a member of the Hutchinson Center's Clinical Research Division. "Now that we know what to test for we can begin screening for the presence of the SNPs in patients and donors and select the optimal donor whose SNP profile will benefit the patient the most."

SNP genotyping is only beneficial for patients when they have multiple matched unrelated donors in order to determine which donor is the optimal match. Fortunately, this is fairly common, according to the study. Of 230 patients who had two or more HLA-matched donors, significant percentages also had at least one donor who was SNP-matched.

A SNP is a base change that involves two or more of the four bases (A, C, T and G) that comprise DNA, and is the simplest form of DNA variation on the human genome. SNPs serve as signposts or markers for nearby genes that are the actual drivers for the effect that they have on disease.

The next step for researchers is to sequence the MHC region of genes close to the SNP locations in order to identify which genes are directly responsible for the correlations of survival and GVHD.

"Once we discover those genes we will characterize them and then we may be able to further refine donor matching," Petersdorf said.

For this study, researchers conducted a retrospective discovery-validation study that examined DNA from more than 4,000 former transplant nationwide. They studied 1,120 SNPs in the MHC on chromosome 6 – the region where all tissue typing and immune function genes are densely packed. They narrowed those SNPs to two that appeared to correlate with disease-free survival and acute GVHD.

Explore further: Bone marrow and blood stem cell transplant survival rates equal, when donor is unrelated to patient

More information: The Science Translational Medicine paper, "MHC-Resident Variation Affects Risks After Unrelated Donor Hematopoietic Cell Transplantation," stm.sciencemag.org/content/4/144/144ra101.full

Related Stories

Bone marrow and blood stem cell transplant survival rates equal, when donor is unrelated to patient

December 12, 2011
Patients who receive a blood stem cell transplant from a donor outside of their family to treat leukemia and other blood diseases are more likely to have graft failure but less likely to experience graft-versus-host disease, ...

Antibodies from rabbits improve survival and relapse outcomes of leukemia and myelodysplasia

July 6, 2012
Researchers at Virginia Commonwealth University (VCU) Massey Cancer Center's Bone Marrow Transplant Program have demonstrated that the use of antibodies derived from rabbits can improve the survival and relapse outcomes of ...

Biomarker detects graft-versus-host-disease in cancer patients after bone marrow transplant

October 21, 2011
A University of Michigan Health System-led team of researchers has found a biomarker they believe can help rapidly identify one of the most serious complications in patients with leukemia, lymphoma and other blood disorders ...

Mini-molecule governs severity of acute graft vs. host disease, study finds

March 12, 2012
Researchers have identified a molecule that helps control the severity of graft-versus-host disease, a life-threatening complication for many leukemia patients who receive a bone-marrow transplant.

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.