Gut bacteria increase fat absorption

September 12, 2012
This confocal microscopy of intestinal epithelial cells (red) in zebrafish shows that the presence of microbes stimulates dietary fatty acid uptake and accumulation in epithelial lipid droplets (green). Credit: Ivana Semova, Ph.D.

You may think you have dinner all to yourself, but you're actually sharing it with a vast community of microbes waiting within your digestive tract. A new study from a team including Carnegie's Steve Farber and Juliana Carten reveals that some gut microbes increase the absorption of dietary fats, allowing the host organism to extract more calories from the same amount of food.

Previous studies showed aid in the breakdown of complex carbohydrates, but their role in dietary fat metabolism remained a mystery, until now. The research is published September 13 by Cell Host & Microbe.

"This study is the first to demonstrate that microbes can promote the of in the intestine and their subsequent metabolism in the body," said senior study author John Rawls of the University of North Carolina. "The results underscore the complex relationship between microbes, diet and host physiology."

The study was carried out in zebrafish, which are optically transparent when young. By feeding the fish fatty acids tagged with fluorescent dyes, an approach originally developed in Farber's lab, the researchers were able to directly observe the absorption and transport of fats in live animals. The Rawl's lab pioneered methods to grow zebrafish larvae in the presence or absence of gut microbes.

By combining approaches, they determined that one type of bacteria, called Firmicutes, is instrumental in increasing fat absorption. They also found that the abundance of Firmicutes in the gut was influenced by diet. Fish fed normally had more Firmicutes than fish that were denied food for several days. Other studies have linked a higher relative abundance of Firmicutes in the gut with obesity in humans.

The findings indicate that bacteria in the gut can increase the host's ability to absorb fat and thereby harvest more from the diet. Another implication is that a high-fat diet promotes the growth of these fat-loving Firmicutes, resulting in more fat absorption.

Although the study involved only fish, not humans, it offers insights that could help inform new approaches to treating obesity and other disorders.

"The unique properties of zebrafish larvae are helping us develop a better understanding of how the intestine functions with the goal of contributing to ongoing efforts to reduce the impact of diseases associated with altered lipid , such as diabetes, obesity, and cardiovascular disease. Our collaboration with the Rawls lab is now focused on how specific gut bacteria are able to stimulate absorption of dietary fat. We hope to use that information to develop new ways to reduce fat absorption in the context of human diseases," Farber said.

The research team also included lead author Ivana Semova and co-author Lantz Mackey, both of UNC, as well as co-authors Jesse Stombaugh and Rob Knight of the University of Colorado at Boulder.

Explore further: Why do the different people's bodies react differently to a high-fat diet?

Related Stories

Why do the different people's bodies react differently to a high-fat diet?

April 26, 2012
Gut flora, otherwise knows as gut microbiota, are the bacteria that live in our digestive tract. There are roughly one thousand different species of bacteria, that are nourished partly by what we eat. Each person has their ...

Studying fish to learn about fat

June 28, 2012
In mammals, most lipids (such as fatty acids and cholesterol) are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory ...

Zebrafish research shows how dietary fat regulates cholesterol absorption

June 22, 2012
Buttery shrimp. Fried eggs. Burgers and fries. New research suggests there may be a biological reason why fatty and cholesterol-rich foods are so appealing together.

Gastric bypass surgery alters gut microbiota profile along the intestine

July 10, 2012
Research to be presented at the Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, finds that gastric bypass surgery ...

Manipulating the microbiome could help manage weight

August 26, 2012
Vaccines and antibiotics may someday join caloric restriction or bariatric surgery as a way to regulate weight gain, according to a new study focused on the interactions between diet, the bacteria that live in the bowel, ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.