Lung imaging research gets its second wind

September 26, 2012

Computational fluid dynamics (CFD) provides a quantitative basis for predicting the pulmonary airflow patterns that carry inhaled materials inside the body. This is not only potentially useful for establishing safer exposure limits to airborne pollutants but also for improving targeted drug delivery in patients with pulmonary disease. One prerequisite is that simulated predictions be thoroughly tested in a living organism, where respiratory airflows depend not only on airway shape and curvature but also on local lung mechanics and associated differences between health and disease. 

Until recently this level of testing has not been possible, but researchers at Pacific Northwest National Laboratory took an important step by making the first-ever comparison between CFD-predicted and measured airflow patterns in a live rat. Their findings highlight the practical use of advanced (MRI) methods that are not only appropriate for developing and assessing predicted airflow patterns within the breathing lung, but also for testing the mass-transfer models that are fundamental to gas mixing in respiratory physiology.

The work is featured on the August cover of the Journal of Magnetic Resonance where the team's pioneering MRI method for visualizing inhaled airflow was also a cover in 2008. The current effort is a logical extension to pulmonary CFD model development and testing.

"It basically took us 4 years to develop the underlying data processing and analysis necessary for direct MRI/CFD comparisons," said PNNL physicist Dr. Kevin Minard, who leads the research team. "To some, this might seem like a long time. The payoff is that we're now at the forefront of developing and testing pulmonary airflow predictions with noninvasive imaging. The team that made this possible is truly unique, and there's currently no equivalent capability elsewhere in the world." 

Researchers employed high-resolution MRI with hyperpolarized 3He gas to accurately capture pulmonary airway structure for CFD. They also performed phase-contrast (PC) MRI for measuring 3He flow velocity, and developed data processing methods to fuse architectural and dynamic detail. The end result is an integrated platform that not only uses MRI to define pulmonary airway structure and specify CFD boundary conditions, but also provides experimental data for directly testing 3D airflow predictions.

Future research is aimed at understanding how pulmonary diseases like cystic fibrosis and emphysema affect local airflow patterns. Said Minard, "We also plan to improve our imaging techniques to visualize more detail in measured airflow patterns.  We can then make finer comparisons between modeling and experiment to directly test how airflow is mediated by local disease."

Initial financial support in 2001 was through PNNL's Laboratory Directed Research and Development program. This was instrumental in growing the $20 million, 10-year project that is currently funded by the National Heart, Lung, and Blood Institute.

"We are seeing the fruits of the Lab's investment," said Dr. Richard Corley, PNNL Fellow and project lead. "Our initial goal was to test 3D models of pulmonary airflow in living organisms."

The PNNL research team includes Kevin Minard, Andrew Kuprat, Senthil Kabilan, Richard Jacob, Daniel Einstein, James Carson, and Richard Corley. The work was done at EMSL, a national scientific user facility at PNNL, sponsored by the U.S. Department of Energy Office of Biological and Environmental Research.

Explore further: Virtual surgery shows promise in personalized treatment of nasal obstruction

More information: KR Minard, AP Kuprat, S Kabilan, RE Jacob, DR Einstein, JP Carson, and RA Corley. 2012. "Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways." Journal of Magnetic Resonance 221:129-138. DOI:10.101016/j.jmr.2012.05.007

Related Stories

Virtual surgery shows promise in personalized treatment of nasal obstruction

April 18, 2011
A preliminary report suggests that virtual nasal surgery has the potential to be a productive tool that may enable surgeons to perform personalized nasal surgery using computer simulation techniques, according to a report ...

Hypoglossal nerve stimulation increases airflow during sleep in obstructive sleep apnea

November 25, 2011
Hypoglossal nerve stimulation (HGNS) produced marked dose-related increases in airflow in obstructive sleep apnea (OSA) patients without arousing them from sleep, according to a new study from the Johns Hopkins Sleep Disorders ...

Research aids nasal drug delivery

February 17, 2012
RMIT University researchers have developed computer models to design more effective nasal sprays to provide alternate drug delivery to needles or pills.

MRI techniques improve pulmonary embolism detection

March 19, 2012
New research shows that the addition of two magnetic resonance imaging (MRI) sequences to a common MR angiography technique significantly improves detection of pulmonary embolism, a potentially life-threatening condition ...

Children who develop asthma have lung function deficits as neonates

March 30, 2012
Children who develop asthma by age seven have deficits in lung function and increased bronchial responsiveness as neonates, a new study from researchers in Denmark suggests.

Recommended for you

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.