Study identifies mechanism that leads to diabetes, blindness

September 17, 2012
Insulin-secreting beta cells in the pancreas cannot make enough cyclic AMP in patients with Wolfram syndrome. As a result, the pancreas produces and secretes less insulin, and the cells eventually die. Credit: Urano lab

The rare disorder Wolfram syndrome is caused by mutations in a single gene, but its effects on the body are far reaching. The disease leads to diabetes, hearing and vision loss, nerve cell damage that causes motor difficulties, and early death.

Now, researchers at Washington University School of Medicine in St. Louis, the Joslin Diabetes Center in Boston and the Novartis Institutes for BioMedical Research report that they have identified a mechanism related to mutations in the WFS1 gene that affects insulin-secreting beta cells. The finding will aid in the understanding of Wolfram syndrome and also may be important in the treatment of milder forms of diabetes and other disorders.

The study is published online in the journal .

"We found something we didn't expect," says researcher Fumihiko Urano, MD, PhD, associate professor of medicine in Washington University's Division of Endocrinology, Metabolism and Lipid Research. "The study showed that the WFS1 gene is crucial to producing a key molecule involved in controlling the metabolic activities of individual cells." That molecule is called cyclic AMP (cyclic ).

Researchers at Washington University School of Medicine in St. Louis and elsewhere have identified a cellular mechanism that allows a single gene to cause damage in many different systems in the body in patients with the severe form of insulin-dependent diabetes known as Wolfram Syndrome. Credit: Washington University BioMed Radio

In insulin-secreting beta cells in the pancreas, for example, cyclic AMP rises in response to , causing those cells to produce and secrete insulin.

"I would compare cyclic AMP to money," Urano says. "You can't just take something you make to the store and use it to buy food. First, you have to convert it into money. Then, you use the money to buy food. In the body, external signals stimulate a cell to make cyclic AMP, and then the cyclic AMP, like money, can 'buy' insulin or whatever else may be needed."

The reason patients with Wolfram syndrome experience so many problems, he says, is because mutations in the WFS1 gene interfere with cyclic AMP production in beta cells in the .

"In patients with Wolfram syndrome, there is no available WFS1 protein, and that protein is key in cyclic AMP production," he explains. "Then, because levels of cyclic AMP are low in insulin-secreting , those cells produce and secrete less insulin. And in nerve cells, less cyclic AMP can lead to nerve cell dysfunction and death."

By finding that cyclic AMP production is affected by mutations in the WFS1 gene, researchers now have a potential target for understanding and treating Wolfram syndrome.

"I don't know whether we can find a way to control cyclic AMP production in specific tissues," he says. "But if that's possible, it could help a great deal."

Meanwhile, although Wolfram syndrome is rare, affecting about 1 in 500,000 people, Urano says the findings also may be important to more common disorders.

"It's likely this mechanism is related to diseases such as type 2 diabetes," he says. "If a complete absence of the WFS1 protein causes , perhaps a partial impairment leads to something milder, like diabetes."

Explore further: Treatment target for diabetes, Wolfram syndrome

Related Stories

Treatment target for diabetes, Wolfram syndrome

August 7, 2012
Inflammation and cell stress play important roles in the death of insulin-secreting cells and are major factors in diabetes. Cell stress also plays a role in Wolfram syndrome, a rare, genetic disorder that afflicts children ...

Brain abnormalities seen in children with severe form of diabetes

July 12, 2012
(Medical Xpress) -- Children with a rare syndrome that includes a form of insulin-dependent diabetes have brain abnormalities that appear to set the stage for cognitive problems later in life, according to new research at ...

Researchers reveal crucial immune fighter role of the STING protein

June 18, 2012
Researchers at Weill Cornell Medical College have unlocked the structure of a key protein that, when sensing certain viruses and bacteria, triggers the body's immediate immune response.

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.