New method of resurfacing bone improves odds of successful grafts

September 25, 2012, Pennsylvania State University
New method of resurfacing bone improves odds of successful grafts
Bone graft coated with inorganic material. Credit: Henry Donahue

(Medical Xpress)—Coating a bone graft with an inorganic compound found in bones and teeth may significantly increase the likelihood of a successful implant, according to Penn State researchers.

Natural bone grafts need to be sterilized and processed with chemicals and radiation before implantation into the body to ensure that disease is not transmitted by the graft. have a rough surface. However, once a graft is sterilized the surface changes and is not optimal for stimulating in the body.

"We created a method for resurfacing bone that had been processed, and resurfacing that bone so that it is now nearly as osteogenic as unprocessed bone—meaning it works nearly as well as bone that hadn't been processed at all," said Henry J. Donahue, Michael and Myrtle Baker Professor of Orthopaedics and Rehabilitation, Penn State College of Medicine. "That's the bottom line."

Donahue, who is also a faculty member of the Huck Institutes of the Life Sciences, and Alayna Loiselle, postdoctoral fellow in orthopaedics and rehabilitation, Penn State College of Medicine, teamed up with Akhlesh Lakhtakia, Charles Godfrey Binder Professor of and Mechanics. They developed a way to create a rough surface on that is similar in texture to the surface of an untreated bone. This similarity promotes healing in the bone.

The researchers found that by coating a bone with the hydroxyapatite, using , they could closely mimic the rough surface of an untreated bone.

To find the optimum thickness of hydroxyapatite, Donahue and Loiselle sterilized the graft samples in their lab at Penn State Hershey Medical Center. After sterilization, the samples went to the University Park campus, where physical vapor deposition layered different amounts of hydroxyapatite on the grafts. Then the samples were returned to Hershey for Donahue and Loiselle to test.

The researchers saw that the optimum thickness of hydroxyapatite was in the middle of what they tested. If the hydroxyapatite coating was not thick enough—or there was none—the graft implant worked, but did not integrate as well as if there were a few nanometers more layered onto the surface. If the hydroxyapatite was too thick, the graft implant again worked, but did not integrate as well as the researchers had seen was possible.

"I thought we wouldn't need to coat the bone more than a couple of hundred nanometers. As it turns out, it was much less than that," said Lakhtakia.

A hundred nanometers is about the size of a single virus.

Fifteen years ago Lakhtakia started an area called sculptured thin films. He thought these might be used to heal broken bones, but wasn't sure how. He suggested that for two bones to be joined, coating the two opposing faces with sculptured thin film might bring them together. Bone is living tissue, so bone would grow through the sculptured thin film and fuse together and create some sort of adhesive bond.

"When [Dr. Donahue] said he had this particular problem and asked if I could do something about it, I thought about that," said Lakhtakia. "In 15 years or so, my understanding had considerably evolved, and the one thing that I thought was that whatever needs to be done on the should not take too much time and should be little in size. If it is little, there is a better chance of integration inside the body—less foreign material inside the human body."

The researchers also believe this method could be used for soft musculoskeletal tissue implants and orthopedic device implants.

Explore further: Microwave heating improves artificial bone

Related Stories

Microwave heating improves artificial bone

July 24, 2012
An artificial bone scaffold produced by researchers in South Korea could enhance the treatment of bone damage and defects through bone grafts.

Researcher develops new coating to help bone implants last

September 20, 2012
(Medical Xpress)—Two Colorado State University professors have developed a nanostructured surface coating for bone that is expected to help improve the lifetime of bone implants.

Recommended for you

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.