Molecule shows effectiveness against drug-resistant myeloma

September 10, 2012

A molecule that targets the cell's machinery for breaking down unneeded proteins can kill multiple myeloma cancer cells resistant to the frontline drug Velcade, researchers at Dana-Farber Cancer Institute have found.

In a study published online by the journal Cancer Cell, the investigators report that the small molecule P5091 triggered apoptosis——in drug-resistant myeloma grown in the laboratory and in animals. The anti-myeloma effect was even more powerful when researchers combined P5091 with other therapies.

"Velcade was one of the first of a class of drugs known as proteasome inhibitors to be approved by the U.S. for multiple myeloma treatment," says Dharminder Chauhan, PhD, lead author of the paper with Ze Tian, PhD, both of Dana-Farber. "While Velcade is successful in many patients with multiple myeloma, it often loses its effectiveness over time, which prompted us to seek other drug targets."

The proteasome acts as a cell's "garbage disposal," chewing up and disposing of unwanted proteins. Inhibiting the proteasome causes an accumulation of waste proteins that spurs cancer cell death.

The proteasome also is part of a larger mechanism known as the ubiquitin proteasome system, or UPS. The system functions by in two manners: It can attach small proteins known as ubiquitins to cell proteins, thereby ticketing those proteins for disposal by the proteasome; or it can remove ubiquitins, thus sparing the proteins from disposal.

"Dysfunction of the UPS has been linked to the development of many human diseases, including cancer, and is a valid target for therapy," Chauhan remarks.

A variety of enzymes help affix or remove ubiquitin from proteins. In the current study, investigators focused on a remover—a "deubiquitylator" known as USP7. Studies have shown that USP7 acts on many cancer-related proteins: by breaking down proteins that restrain , it allows tumors to grow unabated. Patients with high levels of USP7 in their myeloma cells tend to have poorer survival rates.

In the Cancer Cell study, researchers tested whether P5091, a small molecule inhibitor of USP7 that was synthesized by Progenra, Inc., could cause the death of myeloma cell that had developed resistance to and other current therapies.

"Blocking USP7 decreases the level of a cancer-promoting called HDM2, which has the effect of bolstering p53 and p21, a gene that suppresses tumor cell growth," Chauhan states. "The result is that tumor cells stop growing and begin to die."

"In laboratory cell cultures, P5091 resulted in the death of myeloma cells," said the study's senior author, Kenneth Anderson, MD, director of the Jerome Lipper Multiple Myeloma Center and the LeBow Institute for Myeloma Therapeutics at Dana-Farber. "In animal models of myeloma, this molecule impaired tumor growth, prolonged survival, and didn't harm normal tissue." When researchers combined P5091 with the drugs lenalidomide, SAHA, or dexamethasone, the myeloma-killing effects were even more pronounced.

Although P5091 itself has not been formulated into a drug, the study demonstrates "that you can target molecules in the proteasome system without targeting the proteasome itself and still achieve a cancer cell-killing effect, with no significant toxicity," Chauhan remarks. "Our results lay the groundwork for testing USP7 inhibitors, either alone or in combination with other drugs, in patients with ."

Based on the study results, Progenra plans to help lead studies of USP7 inhibitors in future clinical trials.

Explore further: Novel approach scores first success against elusive cancer gene

Related Stories

Novel approach scores first success against elusive cancer gene

September 9, 2011
Dana-Farber Cancer Institute scientists have successfully disrupted the function of a cancer gene involved in the formation of most human tumors by tampering with the gene's "on" switch and growth signals, rather than targeting ...

Scientists devise new strategy to destroy multiple myeloma

August 14, 2012
Researchers at Virginia Commonwealth University Massey Cancer Center are reporting promising results from laboratory and animal experiments involving a new combination therapy for multiple myeloma, the second most common ...

Scientists unravel cancer drug's secret to resistance

March 19, 2012
Drug resistance is a serious problem for cancer patients—over time, a therapy that was once providing some benefit simply stops working. Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) recently ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.