PARP inhibitors may have clinical utility in HER2-positive breast cancers

September 17, 2012

Poly (ADP-Ribose) polymerase (PARP) inhibitors, shown to have clinical activity when used alone in women with familial breast and ovarian cancers linked to BRCA mutations, may be a novel treatment strategy in women with HER2-positive breast cancers, according to the results of a study published in Cancer Research, a journal of the American Association for Cancer Research.

Currently, women with HER2-positive breast cancers are treated with therapies that target HER2. However, many women with this form of cancer either fail to ever respond to these targeted therapies or initially respond to them but then become resistant to their effects.

"Until now, PARP inhibitors have been shown to exhibit single agent activity only in tumors that are deficient in DNA repair, such as familial breast and ovarian cancers that are linked to ," said Eddy S. Yang, M.D., Ph.D., assistant professor in the department of at the University of Alabama-Birmingham.

According to Yang, only about 5 to 10 percent of all breast and are BRCA-associated familial cancers, so researchers are currently trying to expand the patient population that might benefit from PARP inhibitors, which are generally well tolerated and have relatively few side effects.

"To do that, we were attempting to render nonfamilial cancers deficient in DNA repair," he said.

In prior studies, the Yang lab found that inhibiting the (EGFR) pathway, which is commonly overactive in many tumor types, resulted in a DNA repair defect similar to that seen in familial cancers. They subsequently showed that this "forced" DNA repair defect increased tumor sensitivity to PARP inhibitors. Because HER2 and EGFR are in the same family of proteins, Yang and colleagues theorized that HER2-targeted therapies might force a similar DNA repair defect in HER2-positive tumors, increasing their sensitivity to PARP inhibitors.

They found that HER2-positive cell lines were indeed sensitive to PARP inhibitors, both in culture and when transplanted into mice.

"However, the surprise was that these HER2-positive tumors were sensitive to PARP inhibitors alone, independent of a DNA repair defect," Yang said. "This means that there may be other mechanisms, outside of , that dictate the sensitivity of a tumor to PARP inhibitors."

The researchers hope to further map out the reason why HER2-positive tumors are sensitive to PARP inhibitors. If better defined, the knowledge could ultimately broaden the clinical application for PARP inhibitors.

"Our research suggested that inhibition of NF-kB signaling is a possible cause of this sensitivity, but there may be other determinants as well," Yang said. "If we are able to find the determinants of sensitivity, we may be able to extrapolate our effects to other tumor types."

Explore further: Breakthrough could make 'smart drugs' effective for many cancer patients

Related Stories

Recommended for you

'Jumonji' protein key to Ewing's sarcoma rampage

March 24, 2017

By the time Ewing's Sarcoma is diagnosed, primarily in teens and young adults, it has often spread from its primary site to other parts of the body, making it difficult to treat. A University of Colorado Cancer Center study ...

In a sample of blood, researchers probe for cancer clues

March 24, 2017

One day, patients may be able to monitor their body's response to cancer therapy just by having their blood drawn. A new study, led by bioengineers at UC Berkeley, has taken an important step in that direction by measuring ...

Researchers gain insight into breast cancer drug resistance

March 24, 2017

Breast cancer's ability to develop resistance to treatment has frustrated researchers and physicians and has thwarted even the latest and greatest targeted therapies. For example, after researchers identified a disease pathway ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.