Shared pathway links Lou Gehrig's disease with spinal muscular atrophy

September 27, 2012

Researchers of motor neuron diseases have long had a hunch that two fatal diseases, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), might somehow be linked. A new study confirms that this link exists.

"Our study is the first to link the two diseases on a molecular level in ," said Robin Reed, Harvard Medical School professor of and lead investigator of the study.

The results will be published online in the September 27 issue of Cell Reports.

ALS, or Lou Gehrig's disease, which has an adult onset, affects neurons that control voluntary muscles. As a result, muscles start to weaken, and patients eventually lose the ability to move their arms, legs and other parts of the body. In contrast, patients who have SMA tend to be infants and young children. Symptoms are similar to ALS, with lack of ability to control muscles being the major symptom. In both diseases, the most common cause of death is the loss of in the chest, resulting in .

Previous studies have shown that one of the causes of ALS is mutation of the FUS gene, and that a deficiency in the survival of motor neuron (SMN) protein causes SMA disease. The SMN protein is present in bodies in the nucleus known as Gemini of Coiled Bodies, or . Reed's lab connected the FUS protein to the SMN protein and the formation of gems in cellular nuclei.

"Nobody really knows what the function of gems are," said Reed. "The consensus so far is that they might be involved in biogenesis of crucial nuclear RNAs."

The researchers arrived at this pathway by studying human fibroblasts, cells that form the basis of connective tissue. "Unlike other studies of ALS and SMA, in which post-mortem tissue is normally used, we used fibroblasts from patients. These cells are easily accessible because they can be obtained from patients' skin and may provide a better idea of what happens in the human body," said Reed.

Reed and colleagues began the study by showing that the FUS protein is essential for normal gem levels. Without it, gem levels in ALS fibroblasts are much lower than in control fibroblasts.

This feature of ALS fibroblasts led the team to connect the disease with SMA. Previous studies had shown that when cells were deficient in SMN protein, fibroblasts also lacked gems in the nuclei. The loss of gems as a final result in both the SMA and ALS pathways led Reed and her team to believe that they might, in fact, be part of one larger pathway.

"The question now is whether the loss of gems is a cause of the disease or a marker for the disease," said Reed.

Reed is hopeful that even if the loss of gems is a marker, it could be used as a diagnostic tool to determine if someone who is presenting symptoms has ALS. "We will need to find out if the loss of gems is applicable to all cases of ALS or if it is specific to ALS patients with mutations in the FUS gene," added Reed.

Either way, Reed describes these finds as killing two birds with one stone. "This common pathway may mean common treatment and resources."

Explore further: New discovery may block ALS disease process

Related Stories

New discovery may block ALS disease process

April 19, 2011
New Orleans, LA –In the first animal model of Amyotrophic Lateral Sclerosis (ALS), developed by Dr. Udai Pandey, Assistant Professor of Genetics at LSU Health Sciences Center New Orleans, Dr. Pandey's lab has found in ...

Researchers find synthetic RNA lessens severity of fatal disease

November 21, 2011
A team of University of Missouri researchers have found that targeting a synthetic molecule to a specific gene could help the severity of the disease Spinal Muscular Atrophy (SMA) – the leading genetic cause of infantile ...

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.