Stem cell therapy for spinal cord injury

September 25, 2012, CORDIS
Stem cell therapy for spinal cord injury
Credit: Thinkstock

Stem cells are considered promising agents for the recovery of spinal cord injuries. European scientists explore their abilities and plan future therapeutic strategies.

remain without any specific therapy. Despite initial optimism from trials, neuroprotective molecules and poorly defined stem cells have not provided satisfactory controlled therapies.

The European project 'From stem cell technology to functional restoration after spinal cord injury' (Rescue) explored the ability of human stem cells to treat spinal cord damages. For that purpose, neural and non-neural stem cells were selected and evaluated in a rat model of spinal cord injury.

Resident stem cells in human and rodent spinal cord were successfully characterised. This achievement initiated a new long-term objective of the investigation of their fate in healthy and damaged rodent spinal cord.

A primary objective of Rescue was to decipher the safety of grafting adult from human biopsies. The experiments showed the formation of tumours from these grafts; therefore, novel optimised strategies are required.

Human neural precursor-derived were successfully differentiated showing promising results regarding axonal growth on collagen scaffolds. In addition, the adipose stromal stem cells performed better than the classical bone marrow preparation. Rescue scientists extensively examined the abilities of these cells in different scaffolds.

Rescue scientists worked intensively on the regulation of , especially regarding cell orientation and sorting. were targeted to the cells using different viral vectors. The vectors with the best conditions regarding proliferation ability and phenotype were selected for further transplantation studies. A novel was developed that might be suitable for clinical applications. Furthermore, the Rescue consortium created conditionally immortalised neural stem cell lines with very promising features.

The impact of Rescue's achievements in the field of stem cell-based therapies of damages and in particular of spinal cord injuries is significant. It was thoroughly demonstrated that stem cells intrinsic to the human spinal cord are a potential source of therapeutic cells and factors. Future research may focus on a comprehensive in detail characterisation of its phenotypes.

Explore further: Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

Related Stories

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.