Surgery has a more profound effect than anesthesia on brain pathology and cognition in Alzheimer's animal model

September 14, 2012
Shown are representative microscope images of amyloid plaque (on left, arrows), and intracellular tau (on right) in the mouse brain. Below each image are the data showing enhancement of both pathological features when surgery is added to anesthesia (desflurane). Credit: Tang et al, Annals of Surgery, 2012

(Medical Xpress)—A syndrome called "post-operative cognitive decline" has been coined to refer to the commonly reported loss of cognitive abilities, usually in older adults, in the days to weeks after surgery.  In fact, some patients time the onset of their Alzheimer's disease symptoms from a surgical procedure. Exactly how the trio of anesthesia, surgery, and dementia interact is clinically inconclusive, yet of great concern to patients, their families and physicians.

A year ago, researchers at the Perelman School of Medicine at the University of Pennsylvania reported that Alzheimer's pathology, as reflected by cerebral spinal fluid biomarkers, might be increased in patients after surgery and anesthesia.  However, it is not clear whether the or the surgical procedure itself was responsible.  To separate these possibilities, the group turned to a of Alzheimer's disease.

The results, published online this month in the , show that surgery itself, rather than anesthesia, has the more profound impact on a dementia-vulnerable brain.

The team, led by Roderic Eckenhoff, MD, Austin Lamont Professor of Anesthesia, exposed mice with human Alzheimer , to either anesthesia alone, or anesthesia and an abdominal surgery. The surgery was similar to appendectomy or colectomy, very common procedures in humans.   They found that surgery causes a lasting increase in Alzheimer's pathology, primarily through a transient activation of . Also, a significant persisted for at least 14 weeks after surgery compared to controls receiving anesthesia alone.  Neither surgery nor anesthesia produced changes in normal non-transgenic animals.

"In the mice, there was a clear and persistent decrement in caused by surgery as compared with inhalational anesthesia – but only in the context of a brain made vulnerable by human Alzheimer-associated transgenes," notes Eckenhoff.

He also notes that at the time of surgery, the AD mice showed no outward symptoms of AD, despite having subtle evidence of ongoing neuropathology. "This timeline is analogous to both the age range and cognitive status of many of our patients presenting for a surgical procedure and suggests the window of vulnerability to surgery of the Alzheimer's brain extends into this pre-symptomatic period," says Eckenhoff. This period might be analogous to what is now called prodromal AD.

"On the other hand," cautions Maryellen Eckenhoff, PhD, a neuroscientist on the team, "the brain vulnerability seen in the AD mice may not translate well to people."  The AD mice used, like all current mouse models of , more closely resemble the situation in familial Alzheimer disease, which constitutes only a small minority of patients. She points out that it is not yet clear whether results from AD mouse models will represent patients who eventually get late-onset, or "sporadic" Alzheimer disease. These mice are, however, the current standard of choice for screening new drugs and have yielded considerable insight into Alzheimer pathogenesis.

The mechanism linking surgery and the cognitive effects seems to be inflammation. An inflammatory process is well known to occur as a result of surgery, at least outside the central nervous system. How this inflammatory process gains access to the brain, and accelerates AD pathology in a persistent way is still unclear.

Postoperative has not been convincingly demonstrated to persist after three months in most people, and whether it predicts later dementia is still unclear. This study suggests that in the setting of a vulnerable brain, the cognitive deficits after surgery might be irreversible.  

However, the finding that inflammation is the underlying mechanism, immediately suggests a strategy for mitigating injury. "Human studies will be needed to first confirm these findings and then begin to deploy anti-inflammatory strategies to minimize injury," adds Eckenhoff. "As a profession, doctors need to understand the long-term implications of our care, both positive and negative, and do all we can to delay the onset of dementia."

Explore further: Study shows increased Alzheimer's biomarkers in patients after anesthesia and surgery

Related Stories

Study shows increased Alzheimer's biomarkers in patients after anesthesia and surgery

October 4, 2011
(Medical Xpress) -- The possibility that anesthesia and surgery produces lasting cognitive losses has gained attention over past decades, but direct evidence has remained ambiguous and controversial. Now, researchers at the ...

Study reveals how anesthetic isoflurane induces Alzheimer's-like changes in mammalian brains

March 1, 2012
The association of the inhaled anesthetic isoflurane with Alzheimer's-disease-like changes in mammalian brains may by caused by the drug's effects on mitochondria, the structures in which most cellular energy is produced. ...

Test for Alzheimer's disease predicts cognitive decline in Parkinson's disease

December 12, 2011
A method of classifying brain atrophy patterns in Alzheimer's disease patients using MRIs can also detect cognitive decline in Parkinson's disease, according to a new study by researchers from the Perelman School of Medicine ...

PET-CT exams help identify cognitive reserve in early-onset Alzheimer's disease

May 2, 2011
A recent study revealed that the "cognitive reserve" in early-onset Alzheimer's disease (AD) and PET-CT examinations can be used to effectively to identify early-onset AD patients.

Recommended for you

Dementia with Lewy bodies: Unique genetic profile identified

December 15, 2017
Dementia with Lewy bodies has a unique genetic profile, distinct from those of Alzheimer's disease or Parkinson's disease, according to the first large-scale genetic study of this common type of dementia.

Major cause of dementia discovered

December 11, 2017
An international team of scientists have confirmed the discovery of a major cause of dementia, with important implications for possible treatment and diagnosis.

Canola oil linked to worsened memory and learning ability in Alzheimer's

December 7, 2017
Canola oil is one of the most widely consumed vegetable oils in the world, yet surprisingly little is known about its effects on health. Now, a new study published online December 7 in the journal Scientific Reports by researchers ...

Genetics study suggests that education reduces risk of Alzheimer's disease

December 7, 2017
The theory that education protects against Alzheimer's disease has been given further weight by new research from the University of Cambridge, funded by the European Union. The study is published today in the BMJ.

Healthy mitochondria could stop Alzheimer's

December 6, 2017
Alzheimer's disease is the most common form of dementia and neurodegeneration worldwide. A major hallmark of the disease is the accumulation of toxic plaques in the brain, formed by the abnormal aggregation of a protein called ...

Alzheimer's damage in mice reduced with compound that targets APOE gene

December 6, 2017
People who carry the APOE4 genetic variant face a substantial risk for developing Alzheimer's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.