Toxic protein build-up in blood shines light on Huntington's disease

September 17, 2012
This image shows TR-FRET and Huntington protein. Credit: UCL Press Office

A new light-based technique for measuring levels of the toxic protein that causes Huntington's disease (HD) has been used to demonstrate that the protein builds up gradually in blood cells. Published today in the Journal of Clinical Investigation, the findings shed light on how the protein causes damage in the brain, and could be useful for monitoring the progression of HD, or testing new drugs aimed at suppressing production of the harmful protein.

HD is a fatal, incurable, genetic neurological disease that usually develops in adulthood and causes abnormal , and dementia. It is caused by a genetic mutation that results in the production of a harmful protein, called mutant huntingtin.

The research team, led by Professor Sarah Tabrizi of the UCL Institute of Neurology, was made up of scientists from UCL, the Novartis Institutes for Biomedical Research and King's College London. They used a new, ultra-sensitive test to measure how much of the harmful protein and its normal counterpart are found in blood cells from HD patients at different stages of the disease. The test, called TR-FRET, uses pairs of antibodies that stick to huntingtin molecules to absorb and emit light of different colours. This enables very tiny amounts of huntingtin to be detected with great accuracy.

The researchers found that levels of the harmful mutant huntingtin protein built up gradually over the course of the disease, from before the patients show any symptoms onwards. HD causes the brain to shrink more rapidly than normal, as measured using MRI scans. Surprisingly, the amount of in corresponded to the rate of brain shrinkage. This is the first time a blood test has been able to predict in a neurodegenerative disease. Levels of the normal huntingtin protein, on the other hand, stayed constant throughout the disease.

The team went on to demonstrate that small fragments of the most toxic part of the protein were slowly building-up in the white blood cells - the first time this has been demonstrated in cells from human HD patients. If a similar process occurs in brain cells such as neurons, this finding may help explain how the damage gradually accumulates, eventually causing symptoms of HD.

This build-up of the mutant protein in the white blood cells of the immune system may also explain previous findings by Professor Tabrizi's team which showed that the immune system is hyperactive in HD.

"Measuring levels of the mutant protein using TR-FRET is a useful new tool in the fight against HD," said Professor Tabrizi. "We can now accurately study the most toxic form of the in easily obtained blood samples from real patients. The fact that mutant huntingtin levels correlate with brain atrophy tells us we're dealing with something that's relevant to the process of brain degeneration in HD."

The new technique could also be an asset for forthcoming clinical trials of 'gene silencing' drugs that aim to suppress production of the in the brain.

"Gene silencing drugs are very promising, but have significant potential for causing side effects, so we really need to know they're doing their job of lowering huntingtin levels," continued Professor Tabrizi. "This TR-FRET technique offers a way of showing that in real human samples, and we hope that it will help speed up the process of developing drugs that work to slow down this terrible disease."

Huntington's disease is a fatal genetic neurological disease. It usually develops in adulthood and causes abnormal involuntary movements, psychiatric symptoms and dementia. Approximately 7,000 people in the UK have HD with around 20,000 at risk. It is incurable, and no effective treatments exist to slow it down. Patients usually die within 20 years of the start of symptoms. HD is caused by a single known genetic mutation, and each child of a carrier of the mutation has a 50% chance of inheriting the disease.

Explore further: Regulatory enzyme overexpression may protect against neurodegeneration in Huntington's disease

More information: Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression, Journal of Clinical Investigation, 2012.

Related Stories

Regulatory enzyme overexpression may protect against neurodegeneration in Huntington's disease

December 18, 2011
Treatment that increases brain levels of an important regulatory enzyme may slow the loss of brain cells that characterizes Huntington's disease (HD) and other neurodegenerative disorders. In a report receiving advance online ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.